Novel coronavirus disease (COVID-19) pandemic: A recent mini review

Muhammad Fayyaz Ur Rehman, Chaudhary Fariha, Aqsa Anwar, Naveed Shahzad, Munir Ahmad, Salma Mukhtar, Muhammad Farhan Ul Haque, Muhammad Fayyaz Ur Rehman, Chaudhary Fariha, Aqsa Anwar, Naveed Shahzad, Munir Ahmad, Salma Mukhtar, Muhammad Farhan Ul Haque

Abstract

The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHO more than five months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%. Seven different types of coronaviruses had been detected from humans; three of them have resulted in severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes suggests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak. Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consisting of two terminal untranslated regions and twelve putative functional open reading frames (ORFs), encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins, including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcription and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E), membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys the human lungs through cytokine storm, especially in elderly persons and people with immunosuppressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral medicine has been approved by the FDA to treat this disease. This review provides a current status of the COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment methods and vaccines.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Figures

Fig. 1
Fig. 1
Total number of confirmed cases and deaths due to Coronavirus disease-2019 (COVID-19). Adapted from COVID-19 dashboard by WHO (https://covid19.who.int/) accessed on December 19, 2020.
Fig. 2
Fig. 2
Phylogenetic tree of representative species of SARS-CoV-2, SARS-CoV, and MERS-CoV. Red text highlights zoonotic viruses with pathogenicity in humans and green text highlights common respiratory viruses that circulate in humans. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) was shown next to the branches. Figure adapted from Gorbalenya et al., . The tree was drawn based on the sequence information of following species: Severe acute respiratory syndrome related Bat Hp-betacoronavirus Zhejiang2013 (SARSr-CoV Ratg13), Rousettus bat coronavirus GCCDC1 (RO-Bat-CoV GCCDC1), Rousettus bat coronavirus HKU9 (RO-Bat-CoV HKU9), Eidolon bat coronavirus C704 (Ei-Bat-CoV C704), Pipistrellus bat coronavirus HKU5 (Pi-Bat-CoV HKU5), Tylonycteris bat coronavirus HKU4 (Ty-Bat-CoV HKU4), Middle East respiratory syndrome-related coronavirus (MERS-CoV), Hedgehog coronavirus OC43 (HCoV OC43), Murine coronavirus (MHV), Human coronavirus HKU1 (HCoV HKU1), China Rattus coronavirus HKU24 (ChRCoV HKU24), Pangolin Beta-coronavirus (GD-beta-CoV1), Bat Betacoronavirus 1 (Bat Hp-beta-CoV1), Myodes coronavirus 2JL14 (MrufCoV 2JL14), Human coronavirus NL63 (HCoV NL63), Human coronavirus 229E (HCoV 229E). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Genomic features and structure of SARS-CoV-2. (A) Genomic organization of SARS-CoV-2 reference genome (isolate Wuhan-Hu-1) from NCBI (accession number NC_045512.2). All genomic regions or open-reading frames (ORFs) are presented i.e. untranslated regions at both 5′ and 3′ ends (5′-UTR, 3′-UTR), polyproteins (pp1ab), structural proteins including spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins. (B) Structure (created with BioRender.com) of SARS-CoV-2 showing its major structural proteins.
Fig. 4
Fig. 4
Common symptoms and complication related to the patients of coronavirus disease-2019 (COVID-19). (Figure created with BioRender.com).
Fig. 5
Fig. 5
Development of repurposed drugs and vaccines against COVID-19. (1) Inhibition of RNA-dependent RNA polymerase by Favipiravir, Remdesivir and GS-441524. Inhibition of the enzyme halts genomic replication and stops viral dissemination (2) Several drugs have been proposed against helicase but none of them is approved yet (3) Ivermectin dissociates IMP α/β1 (importins) heterodimer, which is responsible for nuclear transport of viral protein cargos, so viral proteins cannot enter into the nucleus to continue vital processes like replication (4) Lopinavir, Ritonavir, Darunavir and Oseltamivir inhibit Main Protease (MPro) enzyme which is involved in maturation of viral proteins (5) Inactive and attenuated SARS-CoV-2 can be used for vaccine production (6) Use of spike protein for development of vaccine candidates by different labs and pharma companies. (Figure created with BioRender.com).

References

    1. Fan Y., Zhao K., Shi Z.-L., Zhou P. Bat coronaviruses in China. Viruses. 2019;11(3):210.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473.
    1. Yang Y., Peng F., Wang R., Guan K., Jiang T., Xu G. SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2003;2020
    1. Yang X., Yu Y., Xu J., Shu H., Liu H., Wu Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respir Med. 2020
    1. Zhang Y.-Z., Holmes E.C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020
    1. Pan X., Chen D., Xia Y., Wu X., Li T., Ou X. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410–411.
    1. Lai C.-C., Shih T.-P., Ko W.-C., Tang H.-J., Hsueh P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;105924
    1. Singhal T. A review of coronavirus disease-2019 (COVID-19) Indian J Pediatrics. 2020;1–6
    1. Ramphul K., Mejias S.G. Coronavirus disease: A review of a new threat to public health. Cureus. 2020;12(3)
    1. Chen Y., Liu Q., Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020
    1. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190–193.
    1. McIntosh K., Becker W.B., Chanock R.M. Growth in suckling-mouse brain of“ IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA. 1967;58(6):2268.
    1. Hu B., Ge X., Wang L.-F., Shi Z. Bat origin of human coronaviruses. Virol J. 2015;12(1):1–10.
    1. Wang N., Shi X., Jiang L., Zhang S., Wang D., Tong P. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–993.
    1. Huang P., Wang H., Cao Z., Jin H., Chi H., Zhao J. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol. 2018;9:1101.
    1. Wang D., Yin Y., Hu C., Liu X., Zhang X., Zhou S. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24:1–9.
    1. Pagliusi S., Jarrett S., Hayman B., Kreysa U., Prasad S.D., Reers M. Emerging Manufacturers engagements in the COVID-19 vaccine research, development and supply. Vaccine. 2020
    1. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452.
    1. Meo S., Alhowikan A., Al-Khlaiwi T., Meo I., Halepoto D., Iqbal M. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012–2019.
    1. Mantovani A., Beatrice G., Dalbeni A. Coronavirus disease (COVID-19) and prevalence of chronic liver disease: A meta-analysis. Liver Int. 2019;2020:40.
    1. Khalili M., Karamouzian M., Nasiri N., Javadi S., Mirzazadeh A., Sharifi H. Epidemiological characteristics of COVID-19: a systematic review and meta-analysis. Epidemiol Infect. 2020;148
    1. Apicella M., Campopiano M.C., Mantuano M., Mazoni L., Coppelli A., Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020
    1. Clark A., Jit M., Warren-Gash C., Guthrie B., Wang H.H.X., Mercer S.W. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. The Lancet. Global Health. 2020
    1. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekly. 2020;2(8):113–122.
    1. Pérez-López F.R., Tajada M., Savirón-Cornudella R., Sánchez-Prieto M., Chedraui P., Terán E. Coronavirus disease 2019 and gender-related mortality in European countries: A meta-analysis. Maturitas. 2020;141:59–62.
    1. Kuguyo O., Kengne A.P., Dandara C. Singapore COVID-19 pandemic response as a successful model framework for low-resource health care settings in Africa? OMICS: A Journal of. Integr Biol. 2020;24(8):470–478.
    1. Africa UNECf. COVID-19 in Africa: protecting lives and economies. 2020.
    1. Musa S.S., Zhao S., Wang M.H., Habib A.G., Mustapha U.T., He D. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infect Diseases Poverty. 2020;9(1):96.
    1. Gorbalenya A., Baker S., Baric R., de Groot R., Drosten C., Gulyaeva A. The species severe acute respiratory syndrome related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–544.
    1. Decaro N., Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol. 2020;108693
    1. Rodriguez-Morales A.J., Bonilla-Aldana D.K., Balbin-Ramon G.J., Rabaan A.A., Sah R., Paniz-Mondolfi A. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020;28(1):3–5.
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
    1. Lau S.K.P., Luk H.K.H., Wong A.C.P., Li K.S.M., Zhu L., He Z. Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(7):1542–1547.
    1. Paraskevis D., Kostaki E.G., Magiorkinis G., Panayiotakopoulos G., Sourvinos G., Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79
    1. Lopes L.R., de Mattos Cardillo G, Paiva P.B. Molecular evolution and phylogenetic analysis of SARS-CoV-2 and hosts ACE2 protein suggest Malayan pangolin as intermediary host. Braz J Microbiol. 2020;1–7
    1. Pereson M.J., Mojsiejczuk L., Martínez A.P., Flichman D.M., Garcia G.H., Di Lello F.A. Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence. J Med Virol. 2020
    1. van Dorp L., Acman M., Richard D., Shaw L.P., Ford C.E., Ormond L. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020;83:104351.
    1. Wise J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020;371
    1. Starr T.N., Greaney A.J., Hilton S.K., Ellis D., Crawford K.H., Dingens A.S. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5) pp. 1295–310. e20.
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4) pp. 812–27. e19.
    1. Chan J.F.-W., Kok K.-H., Zhu Z., Chu H., To K.K.-W., Yuan S. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes Infect. 2020;9(1):221–236.
    1. Wang N., Shang J., Jiang S., Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298.
    1. Beniac D.R., Andonov A., Grudeski E., Booth T.F. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006;13(8):751–752.
    1. DeDiego M.L., Álvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–1713.
    1. Cui L., Wang H., Ji Y., Yang J., Xu S., Huang X. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015;89(17):9029–9043.
    1. Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994;68(9):5403–5410.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7)
    1. Bertram S., Glowacka I., Müller M.A., Lavender H., Gnirss K., Nehlmeier I. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363–13372.
    1. Belouzard S., Chu V.C., Whittaker G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci. 2009;106(14):5871–5876.
    1. Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801–8811.
    1. Snijder E.J., Van Der Meer Y., Zevenhoven-Dobbe J., Onderwater J.J., van der Meulen J., Koerten H.K. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80(12):5927–5940.
    1. Hussain S., Chen Y., Yang Y., Xu J., Peng Y., Wu Y. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol. 2005;79(9):5288–5295.
    1. Sawicki S.G., Sawicki D.L., Siddell S.G. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20–29.
    1. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331(5):991–1004.
    1. Krijnse-Locker J., Ericsson M., Rottier P., Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124(1):55–70.
    1. Kupferschmidt K., Cohen J. American Association for the Advancement of Science; 2020. Race to find COVID-19 treatments accelerates.
    1. Mollica V., Rizzo A., Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16(27):2029–2033.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2) 271-80.e8.
    1. Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls [Internet] StatPearls Publishing. 2020
    1. Channappanavar R, Perlman S, editors. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology; 2017: Springer.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020,:1–3.
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020
    1. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441–447.
    1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA. 2020
    1. Ren L.-L., Wang Y.-M., Wu Z.-Q., Xiang Z.-C., Guo L., Xu T. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J. 2020
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
    1. Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Diseases. 2020
    1. Mao R., Qiu Y., He J.-S., Tan J.-Y., Li X.-H., Liang J. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):18-.
    1. Song F., Shi N., Shan F., Zhang Z., Shen J., Lu H. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):210–217.
    1. Lu Y., Liu D.X., Tam J.P. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun. 2008;369(2):344–349.
    1. Xing Z., Gauldie J., Cox G., Baumann H., Jordana M., Lei X.-F. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig. 1998;101(2):311–320.
    1. Luo P., Liu Y., Qiu L., Liu X., Liu D., Li J. Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. 2020;92(7):814–818.
    1. Binnicker M.J. Emergence of a novel coronavirus disease (COVID-19) and the importance of diagnostic testing: why partnership between clinical laboratories, public health agencies, and industry is essential to control the outbreak. Clin Chem. 2020;66(5):664–666.
    1. Li B., Si H.-R., Zhu Y., Yang X.-L., Anderson D.E., Shi Z.-L. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. Msphere. 2020;5(1)
    1. Guaraldi G., Meschiari M., Cozzi-Lepri A., Milic J., Tonelli R., Menozzi M. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474–e484.
    1. Alagarasu K., Choudhary M., Lole K., Abraham P., Potdar V. Evaluation of RdRp & ORF-1b-nsp14-based real-time RT-PCR assays for confirmation of SARS-CoV-2 infection: An observational study. Indian J Med Res. 2020;151(5):483.
    1. Dharavath B., Yadav N., Desai S., Sunder R., Mishra R., Ketkar M. A one-step, one-tube real-time RT-PCR based assay with an automated analysis for detection of SARS-CoV-2. Heliyon. 2020;6(7)
    1. Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS DISCOVERY: Advancing the Science of Drug Discovery. 2020:2472555220942123.
    1. Wang X., Yao H., Xu X., Zhang P., Zhang M., Shao J. Limits of detection of 6 approved RT–PCR kits for the novel SARS-Coronavirus-2 (SARS-CoV-2) Clin Chem. 2020;66(7):977–979.
    1. Zhang B., Liu S., Dong Y., Zhang L., Zhong Q., Zou Y. Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID-19) J Infect. 2020
    1. Parry J. Covid-19: Hong Kong scientists report first confirmed case of reinfection. British Medical Journal Publishing Group; 2020.
    1. Alizargar J. Risk of reactivation or reinfection of novel coronavirus (COVID-19) J Formos Med Assoc. 2020;119(6):1123-.
    1. Thompson D., Lei Y. Mini Review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports. 2020;100017
    1. Jiang M., Pan W., Arasthfer A., Fang W., Ling L., Fang H. Development and validation of a rapid, single-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for reliable and high-throughput screening of COVID-19. Front Cell Infect Microbiol. 2020;10(331)
    1. Kashir J., Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses. 2020;109786
    1. Buck M.D., Poirier E.Z., Cardoso A., Frederico B., Canton J., Barrell S. Standard operating procedures for SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay. medRxiv. 2020
    1. Thi V.L.D., Herbst K., Boerner K., Meurer M., Kremer L.P., Kirrmaier D. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(556)
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020
    1. Cheng M.P., Yansouni C.P., Basta N.E., Desjardins M., Kanjilal S., Paquette K. Serodiagnostics for severe acute respiratory syndrome-related coronavirus-2: A narrative review. Ann Intern Med. 2020
    1. Vandergaast R., Carey T., Reiter S., Lech P., Gnanadurai C., Tesfay M. Development and validation of IMMUNO-COV: a high-throughput clinical assay for detecting antibodies that neutralize SARS-CoV-2. bioRxiv. 2020
    1. Bonelli F., Sarasini A., Zierold C., Calleri M., Bonetti A., Vismara C.S. Clinical And Analytical Performance Of An Automated Serological Test That Identifies S1/S2 Neutralizing IgG In Covid-19 Patients Semiquantitatively. bioRxiv. 2020
    1. Perera R.A., Mok C.K., Tsang O.T., Lv H., Ko R.L., Wu N.C. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Eurosurveillance. 2020;25(16):2000421.
    1. Muruato A.E., Fontes-Garfias C.R., Ren P., Garcia-Blanco M.A., Menachery V.D., Xie X. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. bioRxiv. 2020
    1. Cassaniti I., Novazzi F., Giardina F., Salinaro F., Sachs M., Perlini S. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol. 2020
    1. Li G., De Clercq E. Nature Publishing Group; 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV)
    1. Le T.T., Cramer J.P., Chen R., Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020 Advance online publication:10.1038/d41573-020-00151-8.
    1. Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents. 2020
    1. Shanmugaraj B., Siriwattananon K., Wangkanont K., Phoolcharoen W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19) Asian Pac J Allergy Immunol. 2020;38(1):10–18.
    1. Marovich M., Mascola J.R., Cohen M.S. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020;324(2):131–132.
    1. Chen L., Xiong J., Bao L., Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20(4):398–400.
    1. Bloch E.M., Shoham S., Casadevall A., Sachais B.S., Shaz B., Winters J.L. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Investig. 2020;130(6):2757–2765.
    1. Pant S., Singh M., Ravichandiran V., Murty U., Srivastava H.K. Peptide-like and small-molecule inhibitors against Covid-19. J Biomol Struct Dyn. 2020;1–10
    1. Rossi J.J., Rossi D. Oligonucleotides and the COVID-19 Pandemic: A Perspective. Nucleic Acid Ther. 2020
    1. Nile S.H., Nile A., Qiu J., Li L., Jia X., Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020
    1. Park A., Iwasaki A. Type I and Type III Interferons-Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe. 2020
    1. Savarino A., Di Trani L., Donatelli I., Cauda R., Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–69.
    1. Yan Y., Zou Z., Sun Y., Li X., Xu K.-F., Wei Y. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300–302.
    1. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases. Lancet Infect Dis. 2003;3(11):722–727.
    1. Mizui T., Yamashina S., Tanida I., Takei Y., Ueno T., Sakamoto N. Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J Gastroenterol. 2010;45(2):195–203.
    1. Farias K.J.S., Machado P.R.L., de Almeida Junior R.F., de Aquino A.A., da Fonseca B.A.L. Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiol Immunol. 2014;58(6):318–326.
    1. Delvecchio R., Higa L.M., Pezzuto P., Valadão A.L., Garcez P.P., Monteiro F.L. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8(12):322.
    1. Dowall S.D., Bosworth A., Watson R., Bewley K., Taylor I., Rayner E. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gener Virol. 2015;96(Pt 12):3484.
    1. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005;2(1):1–10.
    1. Fiolet T., Guihur A., Rebeaud M., Mulot M., Peiffer-Smadja N., Mahamat-Saleh Y. Effect of hydroxychloroquine with or without azithromycin on the mortality of COVID-19 patients: a systematic review and meta-analysis. Clin Microbiol Infect. 2020
    1. Roustit M., Guilhaumou R., Molimard M., Drici M.D., Laporte S., Montastruc J.L. Chloroquine and hydroxychloroquine in the management of COVID-19: Much kerfuffle but little evidence. Therapies. 2020;75(4):363–370.
    1. Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients mainly with mild to moderate COVID-19: an open-label, randomized, controlled trial. medRxiv. 2020:2020.04.10.20060558.
    1. Borba MGS, Val FdA, Sampaio VS, Alexandre MAA, amp, amp, et al. Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: Preliminary safety results of a randomized, double-blinded, phase IIb clinical trial (CloroCovid-19 Study). medRxiv. 2020:2020.04.07.20056424.
    1. Infante M., Ricordi C., Alejandro R., Caprio M., Fabbri A. Hydroxychloroquine in the COVID-19 pandemic era: in pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Review of Anti-infective. Therapy. 2020:1–12.
    1. Jomah S., Asdaq S.M.B., Al-Yamani M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J Infect Public Health. 2020;13(9):1187–1195.
    1. Coomes E.A., Haghbayan H. Favipiravir, an antiviral for COVID-19? J Antimicrob Chemother. 2020;75(7):2013–2014.
    1. Liu C., Zhou Q., Li Y., Garner L.V., Watkins S.P., Carter L.J. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–331.
    1. Lou Y., Liu L., Qiu Y. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized. Controlled Trial medRxiv. 2020
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020
    1. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med. 2020
    1. Cai Q., Yang M., Liu D., Chen J., Shu D., Xia J. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. 2020
    1. Naithani R., Mehta R.G., Shukla D., Chandersekera S.N., Moriarty R.M. Springer; 2010. Antiviral activity of phytochemicals: a current perspective. Dietary components and immune function; pp. 421–468.
    1. Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M.B.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323–2339.
    1. Ashok A., Ravivarman J., Kayalvizhi K. Nutraceutical value of salad vegetables to combat COVID 19. J Pharmacog Phytochem. 2020;9(3):2144–2148.
    1. Basu A., Sarkar A., Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep. 2020;10(1):17699.
    1. Pandey P., Rane J.S., Chatterjee A., Kumar A., Khan R., Prakash A. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 2020;1–11
    1. Swargiary A., Mahmud S., Saleh M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19. J Biomol Struct Dyn. 2020;1–15
    1. Kumar S., Kashyap P., Chowdhury S., Kumar S., Panwar A., Kumar A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine. 2020;153317
    1. Islam R., Parves M.R., Paul A.S., Uddin N., Rahman M.S., Mamun A.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 2020;1–12
    1. Chandel V, Raj S, Rathi B, Kumar D. In Silico Identification of Potent COVID-19 Main Protease Inhibitors from FDA Approved Antiviral Compounds and Active Phytochemicals through Molecular Docking: A Drug Repurposing Approach. 2020
    1. Miyake K., Tango T., Ota Y., Mitamura K., Yoshiba M., Kako M. Efficacy of Stronger Neo-Minophagen C compared between two doses administered three times a week on patients with chronic viral hepatitis. J Gastroenterol Hepatol. 2002;17(11):1198–1204.
    1. Rehman M.F., Batool A.I., Qadir R., Aslam M. Hesperidin and naringenin. In: Mushtaq M., editor. A centum of valuable plant bioactives. Elsevier; In Press: 2021.
    1. Sasaki H., Takei M., Kobayashi M., Pollard R.B., Suzuki F. Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology. 2002;70(4):229–236.
    1. Yang Y., Islam M.S., Wang J., Li Y., Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int J Biol Sci. 2020;16(10):1708–1717.
    1. Williamson G., Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem Pharmacol. 2020;114123
    1. Cortegiani A., Ippolito M., Greco M., Granone V., Protti A., Gregoretti C. Rationale and evidence on the use of tocilizumab in COVID-19: a systematic review. Pulmonology. 2020
    1. Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Annals of the Rheumatic Diseases. 2020:annrheumdis-2020-218122.
    1. Hoffmann M., Schroeder S., Kleine-Weber H., Müller M.A., Drosten C., Pöhlmann S. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrob Agents Chemother. 2020;64(6):e00754–e820.
    1. Shalhoub S. Interferon beta-1b for COVID-19. The Lancet. 2020;395(10238):1670–1671.
    1. Malani AN, Sherbeck JP, Malani PN. Convalescent Plasma and COVID-19. JAMA. 2020;324(5):524-.
    1. Zeng F, Chen X, Deng G. Convalescent plasma for patients with COVID-19. Proceedings of the National Academy of Sciences. 2020;117(23):12528.
    1. Ellsworth G.B., Glesby M.J., Gulick R.M. The Uncertain Role of Corticosteroids in the Treatment of COVID-19. JAMA. Intern Med. 2020
    1. Group TRC Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med. 2020
    1. Callaway E. Coronavirus vaccines: five key questions as trials begin. Nature. 2020;579(7800):481.
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
    1. Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. N Engl J Med. 2020
    1. Kim E., Erdos G., Huang S., Kenniston T.W., Balmert S.C., Carey C.D. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020;102743
    1. Miller A., Reandelar M.J., Fasciglione K., Roumenova V., Li Y., Otazu G.H. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv. 2020
    1. Marciano B.E., Huang C.-Y., Joshi G., Rezaei N., Carvalho B.C., Allwood Z. BCG vaccination in patients with severe combined immunodeficiency: complications, risks, and vaccination policies. J Allergy Clin Immunol. 2014;133(4):1134–1141.
    1. Mahase E. Covid-19: What do we know so far about a vaccine? : British Medical Journal Publishing Group; 2020.
    1. Jaklevic M.C. Researchers strive to recruit hard-hit minorities into COVID-19 vaccine trials. JAMA. 2020
    1. Wu S.C. Progress and concept for COVID-19 vaccine development. Biotechnol J. 2020
    1. Moreno-Fierros L., García-Silva I., Rosales-Mendoza S. Taylor & Francis; 2020. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity?
    1. Chen W.-H., Strych U., Hotez P.J., Bottazzi M.E. The SARS-CoV-2 vaccine pipeline: an overview. Current Trop Med Rep. 2020:1–4.
    1. Torjesen I. Covid-19: Pre-purchasing vaccine—sensible or selfish? : British Medical Journal Publishing Group; 2020.
    1. Burki T.K. The Russian vaccine for COVID-19. The Lancet. Respir Med. 2020
    1. Tang Z., Zhang X., Shu Y., Guo M., Zhang H., Tao W. Insights from nanotechnology in COVID-19 treatment. Nano Today. 2021;36
    1. Jones G.W., Monopoli M.P., Campagnolo L., Pietroiusti A., Tran L., Fadeel B. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine. 2020;15(24):2411–2427.
    1. Lammers T., Sofias A.M., van der Meel R., Schiffelers R., Storm G., Tacke F. Dexamethasone nanomedicines for COVID-19. Nat Nanotechnol. 2020;15(8):622–624.
    1. Pardi N., Tuyishime S., Muramatsu H., Kariko K., Mui B.L., Tam Y.K. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–351.

Source: PubMed

3
Subscribe