Treasure from garden: Bioactive compounds of buckwheat

Md Nurul Huda, Shuai Lu, Tanzim Jahan, Mengqi Ding, Rintu Jha, Kaixuan Zhang, Wei Zhang, Milen I Georgiev, Sang Un Park, Meiliang Zhou, Md Nurul Huda, Shuai Lu, Tanzim Jahan, Mengqi Ding, Rintu Jha, Kaixuan Zhang, Wei Zhang, Milen I Georgiev, Sang Un Park, Meiliang Zhou

Abstract

Buckwheat is a gluten-free crop under the family Polygonaceae abundant with beneficial phytochemicals that provide significant health benefits. It is cultivated and adapted in diverse ecological zones all over the world. Recently its popularity is expanding as a nutrient-rich healthy food with low-calories. The bioactive compounds in buckwheat are flavonoids (i.e., rutin, quercetin, orientin, isoorientin, vitexin, and isovitexin), fatty acids, polysaccharides, proteins, and amino acids, iminosugars, dietary fiber, fagopyrins, resistant starch, vitamins, and minerals. Buckwheat possesses high nutritional value due to these bioactive compounds. Additionally, several essential bioactive factors that have long been gaining interest because these compounds are beneficial for healing and preventing several human diseases. The present review demonstrates an overview of the recent researches regarding buckwheat phytochemicals and particularly focusing on the distinct function of bioactive components with their health benefits.

Keywords: Buckwheat; D-chiro-inositol; Flavonoids; Nutritional value; Rutin.

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 Elsevier Ltd. All rights reserved.

References

    1. Acanski M., Pastor K., Psodorov D., Vujic D., Razmovski R., Kravic S. Determination of the presence of buckwheat flour in bread by the analysis of minor fatty acid methyl esters. Advanced Technologies. 2015;4(2):86–92.
    1. Ahmad M., Ahmad F., Dar E.A., Bhat R.A., Mushtaq T., Shah F. Buckwheat (Fagopyrum esculentum) – a neglected crop of high altitude cold arid regions of ladakh: biology and nutritive value. International Journal of Pure & Applied Bioscience. 2018;6(1):395–406.
    1. Ahmed A., Khalid N., Ahmad A., Abbasi N.A., Latif M.S.Z., Randhawa M.A. Phytochemicals and biofunctional properties of buckwheat: A review. Journal of Agricultural Science. 2013;152(3):349–369.
    1. Amézqueta S., Galán E., Fuguet E., Carrascal M., Abián J., Torres J.L. Determination of D-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI-Q-MS. Analytical and Bioanalytical Chemistry. 2012;402(5):1953–1960.
    1. Bai Y.C., Li C.L., Zhang J.W., Li S.J., Luo X.P., Yao H.P. Characterization of two Tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiologia Plantarum. 2014;152(3):431–440.
    1. Beitane I., Krumina-Zemture G. Evaluation of nutritional quality of raw and roasted buckwheat (Fagopyrum Esculentum M.) fluor. Journal of International Scientific Publications. 2017;5(1):687–695.
    1. Borovaya S.A., Klykov A.G. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants: Review. Plant Biotechnology Reports. 2020;14:213–225. doi: 10.1007/s11816-020-00614-9.
    1. Bose S., Sarkar D., Bose A., Mandal S.S. Natural flavonoids and its pharmaceutical importance. The Pharma Review. 2018:61–75.
    1. Brazier-Hicks M., Evans K.M., Gershater M.C., Puschmann H., Steel P.G., Edwards R. The C-glycosylation of flavonoids in cereals. Journal of Biological Chemistry. 2009;284(27):17926–17934.
    1. Casas M.I., Duarte S., Doseff A.I., Grotewold E. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop. Frontiers in Plant Science. 2014;5:440.
    1. Chauhan R.S., Gupta N., Sharma S.K., Rana J.C., Sharma T.R., Jana S. Genetic and genome resources in buckwheat–present status and future perspectives. The European Journal of Plant Science and Biotechnology. 2010;4(Special Issue1):33–44.
    1. Christa K., Soral-Smietana M. Buckwheat grains and buckwheat products-nutritional and prophylactic value of their components-a review. Czech Journal of Food Sciences. 2008;26(3):153–162.
    1. Chrungoo N.K., Dohtdong L., Chettry U. Diversity in seed storage proteins and their genes in buckwheat. In: Zhou M.-.L., Kreft I., Woo S.-.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Academic Press is an imprint of Elsevier; UK: 2016. pp. 387–400.
    1. Davies K.M., Jibran R., Zhou Y., Albert N.W., Brummell D.A., Jordan B.R. Plant Science. 2020;11(7) doi: 10.3389/fpls.2020.00007.
    1. Dziedzic K., Górecka D., Kucharska M., Przybylska B. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Research International. 2012;47:279–283.
    1. Dziedzic K., Górecka D., Szwengiel A., Sulewska H., Kreft I., Gujska E. The content of dietary fibre and polyphenols in morphological parts of buckwheat (Fagopyrum tataricum) Plant Foods for Human Nutrition. 2018;73:82–88. doi: 10.1007/s11130-018-0659-0.
    1. FAOSTAT (2020). Production/yield quantities of buckwheat in World + (Total) 2018. , Accessed date: February 6, 2020.
    1. Ferreyra M.L.F., Rodriguez E., Casas M.I., Labadie G., Grotewold E., Casati P. Identification of a bifunctional maize C- and O-glucosyltransferase. Journal of Biological Chemistry. 2013;288:31678–31688.
    1. Gabr A.M.M., Sytar O., Ghareeb H., Brestic M. Accumulation of amino acids and flavonoids in hairy root cultures of common buckwheat (Fagopyrum esculentum) Physiology and Molecular Biology of Plants. 2019;25(3):787–797.
    1. Gan, R.-Y., Chan, C.-L., Yang, Q.-Q., Li, H.-B., Zhang, D., Ying-Ying Ge, Y.-Y., et al. (2019). Bioactive compounds and beneficial functions of sprouted grains. In H. Feng, B. Nemzer, & J. W. DeVries (Eds.), Sprouted grains: nutritional value, production, and applications (pp. 191–246). Elsevier Inc. in cooperation with AACC International.
    1. Ge R.H., Wang H. Nutrient components and bioactive compounds in Tartary buckwheat bran and flour as affected by thermal processing. International Journal of Food Properties. 2020;23(1):127–137. doi: 10.1080/10942912.2020.1713151.
    1. Gilbert R.G., Witt T., Hasjim J. What is being learned about starch properties from multiple- level characterization. Cereal Chemistry. 2013;90(4):312–325.
    1. Giménez-Bastida J.A., Zieliński H. Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry. 2015;63(36):7896–7913. doi: 10.1021/acs.jafc.5b02498.
    1. Giménez-Bastida J.A., Laparra-Llopis J.M., Baczek N., Zielinski H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food and function. 2018;9(6):3387–3397. doi: 10.1039/c8fo00193f.
    1. Gonḉalves F.M.F., Debiage R.R., Gonḉalves da Silva R.M., Porto P.P., Yoshihara E., de Mello Peixoto E.C.T. Fagopyrum esculentum Moench: A crop with many purposes in agriculture and human nutrition. African Journal of Agriculture Research. 2016;11(12):983–989. doi: 10.5897/AJAR2015.10747.
    1. Gorniak I., Bartoszewski R., Kroliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews. 2019;18:241–272.
    1. Gupta N., Sharma S.K., Rana J.C., Chauhan R.S. Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. Journal of Plant Physiology. 2011;168(17):2117–2123.
    1. Holton T.A., Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 1995;7:1071–1083.
    1. Ji X., Han L., Liu F., Yin S., Peng Q., Wang M. A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill) International Journal of Biological Macromolecules. 2019;127:204–209. doi: 10.1016/j.ijbiomac.2019.01.043.
    1. Jing R., Li H., Hu C., Jiang Y., Qin L., Zheng C. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. International Journal of Molecular Sciences. 2016;17(4):589. doi: 10.3390/ijms17040589.
    1. Joshi D.C., Chaudhari G.V., Sood S., Kant L., Pattanayak A., Zhang K. Revisiting the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach. Planta. 2019;250(3):783–801. doi: 10.1007/s00425-018-03080-4.
    1. Joshi D.C., Zhang K., Wang C., Chandora R., Khurshid M., Li J. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances. 2020;39 doi: 10.1016/j.biotechadv.2019.107479.
    1. Kalinova J.P., Vrchotova N., Triska J. Phenolics levels in different parts of common buckwheat (Fagopyrum esculentum) achenes. Journal of Cereal Science. 2019;85:243–248. doi: 10.1016/j.jcs.2018.12.012.
    1. Kerscher F., Franz G. Biosynthesis of vitexin and isovitexin: Enzymic synthesis of the C-glucosylflavones vitexin and isovitexin with an enzyme preparation from Fagopyrum esculentum M. seedlings. Zeitschrift für Naturforschung C. 1987;42:519–524.
    1. Kerscher F., Franz G. Isolation and some properties of an UDP-glucose: 2-hydroxyflavanone-6(or 8)-C-glucosyltransferase from Fagopyrum esculentum M. cotyledons. Journal of Plant Physiology. 1988;132(1):110–115.
    1. Kim S.L., Kim S.K., Park C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International. 2004;37:319–327.
    1. Kiprovski B., Mikulic-Petkovsek M., Slatnar A., Veberic R., Stampar F., Malencic D. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chemistry. 2015;185:41–47. doi: 10.1016/j.foodchem.2015.03.137.
    1. Kreft I., Zhou M.-L., Golob A., Germ M., Likar M., Dziedzic K. Breeding buckwheat for nutritional quality. Breeding Science. 2020;70:67–73. doi: 10.1270/jsbbs.19016.
    1. Krumina-Zemture G., Beitane I., Gramatina I. Amino acid and dietary fibre content of pea and buckwheat flours. Research for Rural Development. 2016;1:84–90.
    1. Krupa-Kozak U., Wronkowska M.M., Soral-Śmietana M. Effect of buckwheat flour on microelements and proteins contents in gluten-free bread. Czech Journal of Food Science. 2011;29(2):103–108.
    1. Kwon S.J., Roy S.K., Choi J., Park J., Cho S., Sarker K. Recent research updates on functional components in Buckwheat. Journal of Agricultural Science-Chungbuk National University. 2018;34(1):1–8.
    1. Lehka B.J., Eichenberger M., Bjorn-Yoshimoto W.E., Vanegas K.G., Buijs N., Jensen N.B. Improving heterologous production of phenylpropanoids in Saccharomyces cerevisiae by tackling an unwanted side reaction of Tsc13, an endogenous double-bond reductase. FEMS Yeast Research. 2017;17(1) doi: 10.1093/femsyr/fox004.
    1. Li H. Buckwheat. In: Wang J., Sun B., Tsao R., editors. Bioactive Factors and Processing Technology for Cereal Foods. Springer Nature Singapore Pte Ltd.; 2019. pp. 137–150.
    1. Li J., Yang P., Yang O., Gong X., Ma H., Dang K. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules. 2019;24:1310. doi: 10.3390/molecules24071310.
    1. Li J., Zhang K., Meng Y., Li Q., Ding M., Zhou M.-L. FtMYB16 interacts with Ftimportin-a1 to regulate rutin biosynthesis in Tartary buckwheat. Plant Biotechnology Journal. 2019;17(8):1479–1481. doi: 10.1111/pbi.13121.
    1. Liu H., Lv M., Peng Q., Shan F., Wang M. Physicochemical and textural properties of tartary buckwheat starch after heat-moisture treatment at different moisture levels. Starch. 2015;67(34):276–284. doi: 10.1002/star.201400143.
    1. Luo Q., Li J., Wang C., Cheng C., Shao J., Hui J. TrMYB4 transcription factor regulates the rutin biosynthesis in hairy roots of F. cymosum. Plant Science. 2020;294 doi: 10.1016/j.plantsci.2020.110440.
    1. Lv L., Xia Y., Zou D., Han H., Wang Y., Fang H. Fagopyrum tataricum (L.) Gaertn.: A review on its traditional uses, phytochemical and pharmacology. Food Science and Technology Research. 2017;23(1):1–7.
    1. Maraccini P., Deshayes A., Petiard V., Rogers W.J. Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiology and Biochemistry. 1999;37(4):273–282.
    1. Martin C., Li J. Medicine is not health care, food is health care: Plant metabolic engineering, diet and human health. New phytologist. 2017;216(3):699–719.
    1. Martin-Garcia B., Pasini F., Verardo V., Gomez-Caravaca A.M., Marconi E., Caboni M.F. Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods. 2019;8(12):670. doi: 10.3390/foods8120670.
    1. Matsui K., Walker A.R. Biosynthesis and regulation of flavonoids in buckwheat. Breeding Science. 2019;1–11 doi: 10.1270/jsbbs.19041.
    1. Matsui K., Oshima Y., Mitsuda N., Sakamoto S., Nishiba Y., Walker A.R. Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant science. 2018;274:466–475.
    1. Melini V., Melini F., Acquistucci R. Phenolic compounds and bioaccessibility thereof in functional pasta: Review. Antioxidants. 2020;9(343) doi: 10.3390/antiox9040343.
    1. Mohajan S., Munna M.M., Orchy T.N., Hoque M.M., Farzana T. Buckwheat flour fortified bread. Bangladesh Journal of Science and Industrial Research. 2019;54(4):347–356.
    1. Mota C., Nascimento A.C., Santos M., Delgado I., Coelho I., Rego A. The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum) Journal of Food Composition and Analysis. 2016;49:57–64.
    1. Nagatomo Y., Usui S., Ito T., Kato A., Shimosaka M., Taguchi G. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. The Plant Journal. 2014;80(3):437–448.
    1. Nam T.-G., Lim Y.J., Eom S.H. Flavonoid accumulation in common buckwheat (Fagopyrum esculentum) sprout tissues in response to light. Horticulture, Environment, and Biotechnology. 2018;59(1):19–27. doi: 10.1007/s13580-018-0003-5.
    1. Park B.I., Kim J., Lee K., Lim T., Hwang K.T. Flavonoids in common and Tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. Journal of Food Science and Technology. 2019;56(5):2712–2720. doi: 10.1007/s13197-019-03761-2.
    1. Park C.H., Yeo H.J., Park Y.J., Morgan A.M.A., Arasu M.V., Al-Dhabi N.A. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules. 2017;22(3) doi: 10.3390/molecules22030374.
    1. Park N.I., Li X., Thwe A.A., Lee S.Y., Kim S.G., Wu Q. Enhancement of rutin in Fagopyrum esculentum hairy root cultures by the Arabidopsis transcription factor AtMYB12. Biotechnology Letters. 2012;34(3):577–583.
    1. Perez de Souza L., Garbowicz K., Brotman Y., Tohge T., Fernie A.R. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiology. 2020;182:857–869.
    1. Ramos-Romero S., Hereu M., Atienza L., Amézqueta S., Casas J., Muñoz S. The Buckwheat Iminosugar d-Fagomine Attenuates Sucrose-Induced Steatosis and Hypertension in Rats. Molecular Nutrition & Food Research. 2020;64(1) doi: 10.1002/mnfr.201900564.
    1. Rozanska D., Mikos K., Regulska-Ilow B. Assessment of the glycemic index of groats available on the polish food market. Roczniki Panstwowego Zakładu Higieny. 2020;71(1):81–87. doi: 10.32394/rpzh.2020.0101.
    1. Sindhu R. Composition and functional properties of common buckwheat (Fagopyrum esculentum Moench) flour and starch. International Journal of Innovative Research and Advanced Studies. 2016;3(7):154–159.
    1. Sindhu R., Khatkar B.S. Pseudocereals nutritional composition functional properties and food applications. In: Deka S.C., Seth D., Hulle N.R.S., editors. Food Bioactives: Functionality and Applications in Human Health. Apple Academic Press; U.S.A.: 2019. pp. 129–148.
    1. Sinkovic L., Kokalj D., Vidrih R., Meglic V. Milling fractions fatty acid composition of common (Fagopyrum esculentum Moench) and tartary (Fagopyrum tataricum (L.) Gaertn) buckwheat. Journal of Stored Products Research. 2020;85 doi: 10.1016/j.jspr.2019.101551.
    1. Skrabanja V., Kreft I. Nutritional value of buckwheat proteins and starch. In: Zhou M.-.L., Kreft I., Woo S.-.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Academic Press is an imprint of Elsevier; UK: 2016. pp. 169–176.
    1. Stojilkovski K., Glavac N.K., Kreft S., Kreft I. Fagopyrin and flavonoid contents in common, tartary, and cymosum buckwheat. Journal of Food Composition and Analysis. 2013;32(2):126–130.
    1. Subedi, N. (2018). Changes in phytochemical properties of buckwheat varieties on malting (Thesis). Department of Food Technology, Tribhuvan University, Nepal.
    1. Suzuki T., Kim S.J., Yamauchi H., Takigawa S., Honda Y., Mukasa Y. Characterization of a flavonoid 3-O-glucosyltransferase and its activity during cotyledon growth in buckwheat (Fagopyrum esculentum) Plant Science. 2005;169(5):943–948.
    1. Suzuki T., Noda T., Morishita T., Ishiguro K., Otsuka S., Brunori A. Present status and future perspectives of breeding for buckwheat quality. Breeding Science. 2020;1–19 doi: 10.1270/jsbbs.19018.
    1. Sytar O., Biel W., Smetanska I., Brestic M. Bioactive compounds and their biofunctional properties of different buckwheat germplasms for food processing. In: Zhou M.-.L., Kreft I., Suvorova G., Tang Y., Woo S.H., editors. Buckwheat germplasm in the world. Academic Press; Chennai: 2018. pp. 191–204.
    1. Sytar O., Brestic M., Zivcak M., Tran L.P. The contribution of buckwheat genetic resources to health and dietary diversity. Current Genomics. 2016;17(3):193–206.
    1. Sytar O., Chrenková M., Ferencová J., Polačiková M., Rajský M., Brestič M. Nutrient capacity of amino acids from buckwheat seeds and sprouts. Journal of Food and Nutrition Research. 2018;57(1):38–47.
    1. Taguchi G. Flavonoid biosynthesis in buckwheat. In: Zhou M.-.L., Kreft I., Woo S.-.H., Chrungoo N., Wieslander G., editors. Molecular breeding and nutritional aspects of buckwheat. Academic Press is an imprint of Elsevier; UK: 2016. pp. 377–386.
    1. Thakur R., Kumar S., Awasthi C.P., Madan L., Verma M.L. Biochemical evaluation of tartary buckwheat (Fagopyrum tataricum gaertn.) genotypes of cold desert of himachal pradesh. Biosciences Biotechnology Research Asia. 2017;14(2):821–825.
    1. Tien N.N.T., Trinh L.N.G., Inoue N., Morita N., Hung P.V. Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. Cereal Chemistry. 2018;95(5):615–624. doi: 10.1002/cche.10069.
    1. Tsurunaga Y., Takahashi T., Katsube T., Kudo A., Kuramitsu O., Ishiwata M. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food chemistry. 2013;141(1):552–556.
    1. Tuan P.A., Thwe A.A., Kim J.K., Kim Y.B., Lee S., Park S.U. Molecular characterisation and the light–dark regulation of carotenoid biosynthesis in sprouts of Tartary buckwheat (Fagopyrum tataricum Gaertn.) Food Chemistry. 2013;141(4):3803–3812.
    1. Tungmunnithum D., Thongboonyou A., Pholboon A., Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 2018;5(3):93. doi: 10.3390/medicines5030093.
    1. Vanegas K.G., Larsen A.B., Eichenberger M., Fischer D., Mortensen U.H., Naesby M. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae. Microbial Cell Factories. 2018;17:107. doi: 10.1186/s12934-018-0952-5.
    1. Wajid M., Aslam M.S., Uzair M. Genus Fagopyrum: Phytochemical and Ethnopharmacological Review. Indian Research Journal of Pharmacy and Science. 2015;2(1):1–14.
    1. Wang L., Tian X., Wei W., Chen G., Wu Z. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods. Journal of Separation Science. 2016;39(20):3906–3916.
    1. Wang T., Li Q., Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate: Review. Asian Journal of Pharmaceutical Science. 2018;13(1):12–23.
    1. Wang X.T., Zhu Z.Y., Zhao L., Sun H.Q., Meng M., Zhang J.Y. Structural characterization and inhibition on alpha-D-glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum. Carbohydrate polymers. 2016;153:679–685.
    1. Wu W., Wang L., Qiu J., Li Z. The analysis of fagopyritols from Tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. Journal of Functional Foods. 2018;50:137–146.
    1. Xiao Y., Liu H., Wei T., Shen J., Wang M. Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT. 2017;86:285–292.
    1. Yilmaz M., Kantarjian H., Wang X., Khoury J.D., Ravandi F., Jorgensen J. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. American Journal of Hematology. 2020;95(2):144–150. doi: 10.1002/ajh.25671.
    1. Yiming Z., Hong W., Linlin C., Xiaoli Z., Wen T., Xinli S. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chemistry. 2015;186:244–248.
    1. Yonekura-Sakakibara K., Higashi Y.Y., Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Frontiers in Plant Science. 2019;10:1–16. doi: 10.3389/fpls.2019.00943.
    1. Zhang K., Logacheva M.D., Meng Y., Hu J., Wan D., Li L. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. Journal of Experimental Botany. 2018;69(8):1955–1966.
    1. Zhang X., Huang H., Zhao X., Lv Q., Sun C., Li X. Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. Journal of Functional Foods. 2015;14:144–153.
    1. Zhao J., Jiang L., Tang X., Peng L., Li X., Zhao G. Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. Molecules. 2018;23(1):182. doi: 10.3390/molecules23010182.
    1. Zhao S., Park C.H., Li X., Kim Y.B., Yang J., Sung G.B. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.) Journal of Agricultural and Food Chemistry. 2015;63(38):8622–8630.
    1. Zhou, M.-L., Kreft, I., Woo, S. H., Chrungoo, N., & Wieslander, G. (2016). Bioactive compounds in buckwheat sprouts. In M.-L. Zhou, I. Kreft, S.-H. Woo, N. Chrungoo, & G. Wieslander (Eds.), Molecular Breeding and Nutritional Aspects of Buckwheat (pp. 151–159). Academic Press is an imprint of Elsevier, UK.
    1. Zhou M.-L., Sun Z., Ding M., Logacheva M.D., Kreft I., Wang D. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. The New phytologist. 2017;216(3):814–828.
    1. Zhou X., Hao T., Zhou Y., Tang W., Xiao Y., Meng X. Relationships between antioxidant compounds and antioxidant activities of Tartary buckwheat during germination. Journal of Food Science and Technology. 2015;52(4):2458–2463.
    1. Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery. 2020;6:14. doi: 10.1038/s41421-020-0153-3.
    1. Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chemistry. 2016;203:231–245.
    1. Zhu F. Proanthocyanidins in cereals and pseudocereals. Critical Reviews in Food Science and Nutrition. 2019;59(10):1521–1533. doi: 10.1080/10408398.2017.1418284.
    1. Zielińska D., Turemko M., Kwiatkowski J., Zieliński H. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules. 2012;17(8):9668–9682. doi: 10.3390/molecules17089668.

Source: PubMed

3
Subscribe