Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern?

Cristian Del Bo', Stefano Bernardi, Mirko Marino, Marisa Porrini, Massimiliano Tucci, Simone Guglielmetti, Antonio Cherubini, Barbara Carrieri, Benjamin Kirkup, Paul Kroon, Raul Zamora-Ros, Nicole Hidalgo Liberona, Cristina Andres-Lacueva, Patrizia Riso, Cristian Del Bo', Stefano Bernardi, Mirko Marino, Marisa Porrini, Massimiliano Tucci, Simone Guglielmetti, Antonio Cherubini, Barbara Carrieri, Benjamin Kirkup, Paul Kroon, Raul Zamora-Ros, Nicole Hidalgo Liberona, Cristina Andres-Lacueva, Patrizia Riso

Abstract

Growing evidence support association between polyphenol intake and reduced risk for chronic diseases, even if there is a broad debate about the effective amount of polyphenols able to exert such protective effect. The present systematic review provides an overview of the last 10-year literature on the evaluation of polyphenol intake and its association with specific disease markers and/or endpoints. An estimation of the mean total polyphenol intake has been performed despite the large heterogeneity of data reviewed. In addition, the contribution of dietary sources was considered, suggesting tea, coffee, red wine, fruit and vegetables as the main products providing polyphenols. Total flavonoids and specific subclasses, but not total polyphenols, have been apparently associated with a low risk of diabetes, cardiovascular events and all-cause mortality. However, large variability in terms of methods for the evaluation and quantification of polyphenol intake, markers and endpoints considered, makes it still difficult to establish an evidence-based reference intake for the whole class and subclass of compounds. Nevertheless, the critical mass of data available seem to strongly suggest the protective effect of a polyphenol-rich dietary pattern even if further well targeted and methodologically sound research should be encouraged in order to define specific recommendations.

Keywords: cardiovascular and all-cause mortality; dietary pattern; disease risk; polyphenol databases; polyphenol intake.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Polyphenol subclasses.
Figure 2
Figure 2
PRISMA Diagram.
Figure 3
Figure 3
Estimation of polyphenols intake among countries. Legend: (A) Target population considered; (B) Distribution of published data by country; (C) Questionnaires used to evaluate food intake; (D) Polyphenol database used for evaluation of intake. FFQ: Food Frequency Questionnaire; 24-h DR: 24-h Dietary Recall; USDA: United States Department of Agriculture; PE: Phenol-Explorer.
Figure 4
Figure 4
Estimation of polyphenols intake and risk for cardiovascular diseases and diabetes. Legend: (A) Distribution of published data by country; (B) Target population considered; (C) Questionnaires used to evaluate food intake; (D) Polyphenol database used for evaluation of intake. FFQ: Food Frequency Questionnaire; 24-h DR: 24-h Dietary Recall; USDA: United States Department of Agriculture; PE: Phenol-Explorer.
Figure 5
Figure 5
Estimation of polyphenols intake, all-cause and cardiovascular mortality risk. Legend: (A) Distribution of published data by country; (B) Target population considered; (C) Questionnaires used to evaluate food intake; (D) Polyphenol database used for evaluation of intake. FFQ: Food Frequency Questionnaire; USDA: United States Department of Agriculture; PE: Phenol-Explorer.
Figure 6
Figure 6
Estimation of polyphenols intake and other outcomes. Legend: (A) Distribution of published data by country; (B) Target population considered; (C) Questionnaires used to evaluate food intake; (D) Polyphenol database used for evaluation of intake. Legend: FFQ: Food Frequency Questionnaire; 24-h DR: 24-h Dietary Recall; USDA: United States Department of Agriculture; PE: Phenol-Explorer.

References

    1. Chong P.Y.Y., Ho S.C., Kreiger N., Murphy P.A., So E.K.F., Chan S.G., Darlington G. Isoflavonoid content of Hong Kong soy foods. J. Agric. Food Chem. 2009;57:5386–5390.
    1. Arts C., Hollman P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005;81:317S–325S. doi: 10.1093/ajcn/81.1.317S.
    1. Cherniack E.P. Polyphenols and Aging. Mol. Basis Nutr. Aging Vol. Mol. Nutr. Ser. 2016;3:649–657.
    1. Spencer J.P.E., Abd El Mohsen M.M., Minihane A.M., Mathers J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008;99:12–22. doi: 10.1017/S0007114507798938.
    1. Song W.O., Chun O.K. Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J. Nutr. 2008;138:1543S–1547S. doi: 10.1093/jn/138.8.1543S.
    1. Ilow R., Regulska-Ilow B., Walkiewicz G., Biernat J., Kowalisko A. Evaluation of bioflavonoid intake in the diets of 50-year-old inhabitants of wrocław. Adv. Clin. Exp. Med. 2008;17:327–336.
    1. Otaki N., Kimira M., Katsumata S., Uehara M., Watanabe S., Suzuki K. Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. J. Clin. Biochem. Nutr. 2009;44:231–238. doi: 10.3164/jcbn.08-231.
    1. Chun O.K., Floegel A., Chung S.-J., Chung C.E., Song W.O., Koo S.I. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J. Nutr. 2009;140:317–324. doi: 10.3945/jn.109.114413.
    1. Yang J., Zhang Y., Chang P., Hao D., Cao J., Zhang Y., Zhao X., Chen W. Reproducibility and relative validity of a food frequency questionnaire to assess intake of dietary flavonol and flavone in Chinese university campus population. Nutr. Res. 2010;30:520–526.
    1. Zhang Y., Li Y., Cao C., Cao J., Chen W., Zhang Y., Wang C., Wang J., Zhang X., Zhao X. Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr. Cancer. 2010;62:1120–1127. doi: 10.1080/01635581.2010.513800.
    1. Hanna K.L., O’Neill S., Lyons-Wall P.M. Intake of isoflavone and lignan phytoestrogens and associated demographic and lifestyle factors in older Australian women. Asia Pac. J. Clin. Nutr. 2010;19:540–549.
    1. Pérez-Jiménez J., Fezeu L., Touvier M., Arnault N., Manach C., Hercberg S., Galan P., Scalbert A. Dietary intake of 337 polyphenols in French adults 1–3. Am. J. Clin. Nutr. 2011;93:1220–1228. doi: 10.3945/ajcn.110.007096.
    1. Zamora-Ros R., Knaze V., Luján-Barroso L., Slimani N., Romieu I., Fedirko V., De Magistris M.S., Ericson U., Amiano P., Trichopoulou A., et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European prospective investigation into cancer and nutrition (EPIC) 24 hour dietary recall cohort. Br. J. Nutr. 2011;106:1915–1925. doi: 10.1017/S000711451100239X.
    1. Wang Y., Chung S.-J., Song W.O., Chun O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J. Nutr. 2011;141:447–452. doi: 10.3945/jn.110.133900.
    1. Knaze V., Zamora-Ros R., Luján-Barroso L., Romieu I., Scalbert A., Slimani N., Riboli E., Van Rossum C.T.M., Bueno-De-Mesquita H.B., Trichopoulou A., et al. Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European prospective investigation into cancer and nutrition (EPIC) study. Br. J. Nutr. 2012;108:1095–1108. doi: 10.1017/S0007114511006386.
    1. Zamora-Ros R., Knaze V., Luján-Barroso L., Slimani N., Romieu I., Touillaud M., Kaaks R., Teucher B., Mattiello A., Grioni S., et al. Estimation of the intake of anthocyanidins and their food sources in the European prospective investigation into cancer and nutrition (EPIC) study. Br. J. Nutr. 2011;106:1090–1099. doi: 10.1017/S0007114511001437.
    1. Beking K., Vieira A. An assessment of dietary flavonoid intake in the UK and Ireland. Int. J. Food Sci. Nutr. 2011;62:17–19. doi: 10.3109/09637486.2010.511165.
    1. Ilow R., Regulska-Ilow B., Rózańska D., Misiewicz D., Grajeta H., Kowalisko A., Biernat J. Assessment of dietary flavonoid intake among 50-year-old inhabitants of Wroclaw in 2008. Adv. Clin. Exp. Med. 2012;21:353–362.
    1. Zujko M.E., Witkowska A.M., Waœkiewicz A., Sygnowska E. Estimation of dietary intake and patterns of polyphenol consumption in Polish adult population. Adv. Med. Sci. 2012;57:375–384. doi: 10.2478/v10039-012-0026-6.
    1. Lee H.S., Cho Y.H., Park J., Shin H.R., Sung M.K. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea. J. Acad. Nutr. Diet. 2013;113:1194–1199. doi: 10.1016/j.jand.2013.04.022.
    1. Zamora-Ros R., Knaze V., Romieu I., Scalbert A., Slimani N., Clavel-Chapelon F., Touillaud M. Impact of thearubigins on the estimation of total dietary flavonoids in the European prospective investigation into cancer and nutrition (EPIC) study. Eur. J. Clin. Nutr. 2019;67:779–782. doi: 10.1038/ejcn.2013.89.
    1. Tresserra-Rimbau A., Medina-Remón A., Pérez-Jiménez J., Martínez-González M.A., Covas M.I., Corella D., Salas-Salvadó J., Gómez-Gracia E., Lapetra J., Arós F., et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2013;23:953–959. doi: 10.1016/j.numecd.2012.10.008.
    1. Vogiatzoglou A., Heuer T., Mulligan A.A., Lentjes M.A.H., Luben R.N., Kuhnle G.G.C. Estimated dietary intakes and sources of flavanols in the German population (German National Nutrition Survey II) Eur. J. Nutr. 2013;53:635–643. doi: 10.1007/s00394-013-0572-0.
    1. Grosso G., Stepaniak U., Topor-Madry R., Szafraniec K., Pajak A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition. 2014;30:1398–1403. doi: 10.1016/j.nut.2014.04.012.
    1. Witkowska A.M., Zujko M.E., Waśkiewicz A., Terlikowska K.M., Piotrowski W. Comparison of various databases for estimation of dietary polyphenol intake in the population of polish adults. Nutrients. 2015;7:9299–9308. doi: 10.3390/nu7115464.
    1. Kim Y.J., Park M.Y., Chang N., Kwon O. Intake and major sources of dietary flavonoid in Korean adults: Korean national health and nutrition examination survey 2010–2012. Asia Pac. J. Clin. Nutr. 2015;24:456–463.
    1. Zamora-Ros R., Knaze V., Rothwell J.A., Hémon B., Moskal A., Overvad K., Tjønneland A., Kyrø C., Fagherazzi G., Boutron-Ruault M.C., et al. Dietary polyphenol intake in Europe: The European prospective investigation into cancer and nutrition (EPIC) study. Eur. J. Nutr. 2016;55:1359–1375. doi: 10.1007/s00394-015-0950-x.
    1. Vogiatzoglou A., Mulligan A.A., Lentjes M.A.H., Luben R.N., Spencer J.P.E., Schroeter H., Khaw K.T., Kuhnle G.G.C. Flavonoid intake in European adults (18 to 64 Years) PLoS ONE. 2015;10:e0128132. doi: 10.1371/journal.pone.0128132.
    1. Sebastian R.S., Enns C.W., Goldman J.D., Martin C.L., Steinfeldt L.C., Murayi T., Moshfegh A.J. A new database facilitates characterization of flavonoid intake, sources, and positive associations with diet quality among US adults. J. Nutr. 2015;145:1239–1248. doi: 10.3945/jn.115.213025.
    1. Kozlowska A., Przekop D., Szostak-Wegierek D. Flavonoids intake among Polish and Spanish students. Rocz. Panstw. Zakl. Hig. 2015;66:319–325.
    1. Zujko M.E., Witkowska A.M., Waskiewicz A., Mirończuk-Chodakowska I. Dietary Antioxidant and Flavonoid Intakes Are Reduced in the Elderly. Oxid. Med. Cell. Longev. 2015;2015:843173. doi: 10.1155/2015/843173.
    1. Taguchi C., Fukushima Y., Kishimoto Y., Suzuki-Sugihara N., Saita E., Takahashi Y., Kondo K. Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients. 2015;7:10269–10281. doi: 10.3390/nu7125530.
    1. Sun C., Wang H., Wang D., Chen Y., Zhao Y., Xia W. Using an FFQ to assess intakes of dietary flavonols and flavones among female adolescents in the Suihua area of northern China. Public Health Nutr. 2015;18:632–639. doi: 10.1017/S1368980014000780.
    1. Kim K., Vance T.M., Chun O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016;55:833–843. doi: 10.1007/s00394-015-0942-x.
    1. Burkholder-Cooley N., Rajaram S., Haddad E., Fraser G.E., Jaceldo-Siegl K. Comparison of polyphenol intakes according to distinct dietary patterns and food sources in the Adventist Health Study-2 cohort. Br. J. Nutr. 2016;115:2162–2169. doi: 10.1017/S0007114516001331.
    1. Pounis G., Costanzo S., Donati M.B., de Gaetano G., Iacoviello L., Bonaccio M., Persichillo M., Di Castelnuovo A., Krogh V. Flavonoid and lignan intake in a Mediterranean population: Proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur. J. Clin. Nutr. 2015;70:338–345. doi: 10.1038/ejcn.2015.178.
    1. Ivey K.L., Croft K., Prince R.L., Hodgson J.M. Comparison of flavonoid intake assessment methods. Food Funct. 2016;7:3748–3759. doi: 10.1039/C4FO00234B.
    1. Godos J., Marventano S., Mistretta A., Galvano F., Grosso G. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2017;68:750–756. doi: 10.1080/09637486.2017.1285870.
    1. Miranda A.M., Steluti J., Fisberg R.M., Marchioni D.M. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: A population-based study. Br. J. Nutr. 2016;115:1061–1070. doi: 10.1017/S0007114515005061.
    1. Burkholder-Cooley N.M., Rajaram S.S., Haddad E.H., Oda K., Fraser G.E., Jaceldo-Siegl K. Validating polyphenol intake estimates from a food-frequency questionnaire by using repeated 24-h dietary recalls and a unique method-of-triads approach with 2 biomarkers. Am. J. Clin. Nutr. 2017;105:685–694. doi: 10.3945/ajcn.116.137174.
    1. Bawaked R.A., Schröder H., Barba L.R., Cárdenas G., Rodrigo C.P., Peña-Quintana L., Fíto M., Majem L.S. Dietary flavonoids of Spanish youth: Intakes, sources, and association with the Mediterranean diet. PeerJ. 2017;5:e3304. doi: 10.7717/peerj.3304.
    1. Zamora-Ros R., Biessy C., Rothwell J.A., Monge A., Lajous M., Scalbert A., López-Ridaura R., Romieu I. Dietary polyphenol intake and their major food sources in the Mexican teachers’ cohort. Br. J. Nutr. 2018;120:353–360. doi: 10.1017/S0007114518001381.
    1. Ziauddeen N., Rosi A., Del Rio D., Amoutzopoulos B., Nicholson S., Page P., Scazzina F., Brighenti F., Ray S., Mena P. Dietary intake of (poly)phenols in children and adults: Cross-sectional analysis of UK national diet and nutrition survey rolling programme (2008–2014) Eur. J. Nutr. 2018 doi: 10.1007/s00394-018-1862-3.
    1. Karam J., Del Mar Bibiloni M., Tur J.A. Polyphenol estimated intake and dietary sources among older adults from Mallorca Island. PLoS ONE. 2018;13:e0191573. doi: 10.1371/journal.pone.0191573.
    1. Rossi M.C., Bassett M.N., Sammán N.C. Dietary nutritional profile and phenolic compounds consumption in school children of highlands of Argentine Northwest. Food Chem. 2018;238:111–116. doi: 10.1016/j.foodchem.2016.12.065.
    1. Wisnuwardani R.W., Marcos A., Kersting M., Sjöström M., Widhalm K., Moreno L.A., Forsner M., Michels N., Rothwell J.A., Androutsos O., et al. Estimated dietary intake of polyphenols in European adolescents: The HELENA study. Eur. J. Nutr. 2018 doi: 10.1007/s00394-018-1787-x.
    1. Kent K., Charlton K.E., Lee S., Mond J., Russell J., Mitchell P., Flood V.M. Dietary flavonoid intake in older adults: How many days of dietary assessment are required and what is the impact of seasonality? Nutr. J. 2018;17:7. doi: 10.1186/s12937-017-0309-7.
    1. Vitale M., Bianchini F., Turco A.A., Barrea A., Riccardi G., Mannucci E., Fornengo P., Giorgino F., Romeo F., Santini C., et al. Dietary intake and major food sources of polyphenols in people with type 2 diabetes: The Study. Eur. J. Nutr. 2018;57:679–688. doi: 10.1007/s00394-016-1355-1.
    1. Nascimento-Souza M.A., de Paiva P.G., Pérez-Jiménez J., do Carmo Castro Franceschini S., Ribeiro A.Q. Estimated dietary intake and major food sources of polyphenols in elderly of Viçosa, Brazil: A population-based study. Eur. J. Nutr. 2018;57:617–627. doi: 10.1007/s00394-016-1348-0.
    1. Huffman F., Vaccaro J., Zarini G., Dixon Z. Dietary intake of flavonoids and HDL- and LDL- cholesterol in two black ethnicities with and without type 2 diabetes. Int. J. Cardiovasc. Res. 2012;7:1–7.
    1. Pellegrini N., Valtueña S., Ardigò D., Brighenti F., Franzini L., Del Rio D., Scazzina F., Piatti P.M., Zavaroni I. Intake of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, and lariciresinol in relation to vascular inflammation and endothelial dysfunction in middle age-elderly men and post-menopausal women living in Northern Italy. Nutr. Metab. Cardiovasc. Dis. 2010;20:64–71. doi: 10.1016/j.numecd.2009.02.003.
    1. Jacques P.F., Cassidy A., Rogers G., Peterson J.J., Dwyer J.T. Dietary flavonoid intakes and CVD incidence in the Framingham offspring cohort. Br. J. Nutr. 2015;114:1496–1503. doi: 10.1017/S0007114515003141.
    1. Yeon J.Y., Bae Y.J., Kim E.Y., Lee E.J. Association between flavonoid intake and diabetes risk among the Koreans. Clin. Chim. Acta. 2015;439:225–230. doi: 10.1016/j.cca.2014.10.042.
    1. Oh J.S., Kwon O., Vijayakumar A., Kim H., Kim Y., Chang N. Association of dietary flavonoid intake with prevalence of type 2 diabetes mellitus and cardiovascular disease risk factors in Korean women aged ≥30 years. J. Nutr. Sci. Vitaminol. Nutr. Sci. Vitaminol. 2017;63:51–58. doi: 10.3177/jnsv.63.51.
    1. Goetz M.E., Judd S.E., Hartman T.J., McClellan W., Anderson A., Vaccarino V. Flavanone intake is inversely associated with risk of incident ischemic stroke in the reasons for geographic and racial differences in stroke (REGARDS) study. J. Nutr. 2016;146:2233–2243. doi: 10.3945/jn.116.230185.
    1. Goetz M.S.M., Hartman T., Vaccarino V., Judd S., McClellan W.M. Dietary flavonoid intake and incident coronary heart disease in the reasons for geographic and racial differences in stroke study (REGARDS) Ann. Epidemiol. 2015;25:715. doi: 10.1016/j.annepidem.2015.06.062.
    1. Miranda A.M., Steluti J., Fisberg R.M., Marchioni D.M. Association between polyphenol intake and hypertension in adults and older adults: A population-based study in Brazil. PLoS ONE. 2016;11:e0165791. doi: 10.1371/journal.pone.0165791.
    1. Cassidy A., Bertoia M., Chiuve S., Flint A., Forman J., Rimm E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016;104:587–594. doi: 10.3945/ajcn.116.133132.
    1. Kim K., Vance T.M., Chun O.K. Greater flavonoid intake is associated with improved CVD risk factors in US adults. Br. J. Nutr. 2016;115:1481–1488. doi: 10.1017/S0007114516000519.
    1. Rizzi F., Conti C., Dogliotti E., Terranegra A., Salvi E., Braga D., Ricca F., Lupoli S., Mingione A., Pivari F., et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: A nutrigenetic observational study. J. Transl. Med. 2016;14:186. doi: 10.1186/s12967-016-0941-6.
    1. Grosso G., Stepaniak U., Micek A., Kozela M., Stefler D., Bobak M., Pajak A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the health, alcohol and psychosocial factors in Eastern Europe (HAPIEE) study. Br. J. Nutr. 2017;118:60–68. doi: 10.1017/S0007114517001805.
    1. Cassidy A., Reilly J.O., Kay C., Sampson L., Franz M., Forman J.P., Curhan G., Rimm E.B. Habitual intake of flavonoid subclasses and incident hypertension. Am. J. Clin. Nutr. 2010;93:338–347. doi: 10.3945/ajcn.110.006783.
    1. Witkowska A.M., Waśkiewicz A., Zujko M.E., Szcześniewska D., Pająk A., Stepaniak U., Drygas W. Dietary polyphenol intake, but not the dietary total antioxidant capacity, is inversely related to cardiovascular disease in postmenopausal Polish women: Results of WOBASZ and WOBASZ II studies. Oxid. Med. Cell. Longev. 2017;2017:5982809. doi: 10.1155/2017/5982809.
    1. Grosso G., Stepaniak U., Micek A., Stefler D., Bobak M., Pająk A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 2017;56:1409–1420. doi: 10.1007/s00394-016-1187-z.
    1. Sohrab G., Somayeh H.-N., Parvin M., Ebrahimof S., Yuzbashian E., Fereidoun A. Association of dietary intakes of total polyphenol and its subclasses with the risk of metabolic syndrome: Tehran lipid and glucose study. Metab. Syndr. Relat. Disord. 2018;16:274–281. doi: 10.1089/met.2017.0140.
    1. Mendonça R.D., Gea A., Martin-Moreno J.M., Martinez-Gonzalez M.A., Pimenta A.M., Carvalho N.C., Bes-Rastrollo M., Lopes A.C.S. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2018;29:69–78. doi: 10.1016/j.numecd.2018.09.012.
    1. Wedick N.M., Pan A., Cassidy A., Rimm E.B., Sampson L., Rosner B., Willett W., Hu F.B., Sun Q., Van Dam R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012;95:925–933. doi: 10.3945/ajcn.111.028894.
    1. Zamora-ros R., Forouhi N.G., Sharp S.J., Gonz C.A., Buijsse B., Guevara M., Schouw Y.T., Van Der Amiano P., Boeing H., Bredsdorff L., et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J. Nutr. 2013;144:335–344. doi: 10.3945/jn.113.184945.
    1. Zamora-Ros R., Forouhi N.G., Sharp S.J., González C.A., Buijsse B., Guevara M., Van Der Schouw Y.T., Amiano P., Boeing H., Bredsdorff L., et al. The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in european populations: The EPIC-InterAct study. Diabetes Care. 2013;36:3961–3970. doi: 10.2337/dc13-0877.
    1. Jacques P.F., Cassidy A., Rogers G., Dwyer J.T., Meigs J.B., Peterson J.J. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J. Nutr. 2013;143:1474–1480. doi: 10.3945/jn.113.177212.
    1. Tresserra-Rimbau A., Medina-Remón A., Salas-Salvadó J., Estruch R., Lamuela-Raventós R.M., Rimm E.B., Ruiz-Gutiérrez V., Corella D., Sorlí J.V., Vinyoles E., et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014;24:639–647. doi: 10.1016/j.numecd.2013.12.014.
    1. Jennings A., Spector T., Cassidy A., Macgregor A., Welch A.A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr. 2013;144:202–208. doi: 10.3945/jn.113.184358.
    1. Ponzo V., Goitre I., Fadda M., Gambino R., de Francesco A., Soldati L., Gentile L., Magistroni P., Cassader M., Bo S. Dietary flavonoid intake and cardiovascular risk: A population-based cohort study. J. Transl. Med. 2015;13:218. doi: 10.1186/s12967-015-0573-2.
    1. McCullough M.L., Peterson J.J., Patel R., Jacques P.F., Shah R., Dwyer J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi: 10.3945/ajcn.111.016634.
    1. Zamora-ros R., Cherubini A., Urp M., Bandinelli S., Ferrucci L., Andres-lacueva C. High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. J. Nutr. 2013;143:1445–1450. doi: 10.3945/jn.113.177121.
    1. Zamora-Ros R., Jiménez C., Cleries R., Agudo A., Sánchez M.J., Sánchez-Cantalejo E., Molina-Montes E., Navarro C., Chirlaque M.D., María Huerta J., et al. Dietary flavonoid and lignan intake and mortality in a Spanish cohort. Epidemiology. 2013;24:726–733. doi: 10.1097/EDE.0b013e31829d5902.
    1. Ivey K.L., Lewis J.R., Prince R.L., Hodgson J.M. Tea and non-tea flavonol intakes in relation to atherosclerotic vascular disease mortality in older women. Br. J. Nutr. 2013;110:1648–1655. doi: 10.1017/S0007114513000780.
    1. Ivey K.L., Hodgson J.M., Croft K.D., Lewis J.R., Prince R.L. Flavonoid intake and all-cause mortality. Am. J. Clin. Nutr. 2015;101:1012–1020. doi: 10.3945/ajcn.113.073106.
    1. Dower J.I., Geleijnse J.M., Hollman P.C.H., Soedamah-Muthu S.S., Kromhout D. Dietary epicatechin intake and 25-y risk of cardiovascular mortality: The zutphen elderly study. Am. J. Clin. Nutr. 2016;104:58–64. doi: 10.3945/ajcn.115.128819.
    1. Kerry L.I., Cassidy A., Eliassen A.H., Jensen M.K., Rimm E.B., Hodgson J.M. Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. Br. J. Nutr. 2017;117:1470–1477.
    1. Zhang F.F., Haslam D.E., Terry M.B., Knight J.A., Andrulis I.L., Daly M.B., Buys S.S., John E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The breast cancer family registry. Cancer. 2017;123:2070–2079. doi: 10.1002/cncr.30615.
    1. Pounis G., Bonanni A., Galuppo G., Pampuch A., Olivieri M., Guszcz T., Sciarretta A., Centritto V., Spagnuolo P., Caccamo S., et al. Reduced mortality risk by a polyphenol-rich diet: An analysis from the Moli-sani study. Nutrition. 2017;48:87–95. doi: 10.1016/j.nut.2017.11.012.
    1. Fisher N.D.L., Hurwitz S., Hollenberg N.K. Habitual flavonoid intake and endothelial function in healthy humans. J. Am. Coll. Nutr. 2012;31:275–279. doi: 10.1080/07315724.2012.10720433.
    1. Ivey K.L., Lewis J.R., Lim W.H., Lim E.M., Hodgson J.M., Prince R.L. Associations of proanthocyanidin intake with renal function and clinical outcomes in elderly women. PLoS ONE. 2013;8:e71166. doi: 10.1371/journal.pone.0071166.
    1. Lefèvre-Arbogast S., Samieri C., Dartigues J.-F., Féart C., Letenneur L., Delcourt C., Bensalem J., Gaudout D., Hejblum B.P. Pattern of polyphenol intake and the long-term risk of dementia in older persons. Neurology. 2018;90:e1979–e1988. doi: 10.1212/WNL.0000000000005607.
    1. Segovia-Siapco G., Pribis P., Oda K., Sabaté J. Soy isoflavone consumption and age at pubarche in adolescent males. Eur. J. Nutr. 2018;57:2287–2294. doi: 10.1007/s00394-017-1504-1.
    1. Rabassa M., Cherubini A., Raul Z.-R., Urpi-Sarda M., Bandinelli S., Ferrucci L., Andres-Lacueva C. Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: The invecchiare in chianti study. J. Am. Geriatr. Soc. 2015;63:938–946. doi: 10.1111/jgs.13379.
    1. Zhang Z.-Q., Su Y.-X., Liu Y.-h., He L.-P., Chen Y.-M., Liu J. Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos. Int. 2014;25:2417–2425. doi: 10.1007/s00198-014-2763-9.
    1. Urpi-Sarda M., Andres-Lacueva C., Rabassa M., Ruggiero C., Zamora-Ros R., Bandinelli S., Ferrucci L., Cherubini A. The relationship between urinary total polyphenols and the frailty phenotype in a community-dwelling older population: The InCHIANTI Study. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2015;70:1141–1147. doi: 10.1093/gerona/glv026.
    1. Myers G., Prince R.L., Kerr D.A., Devine A., Woodman R.J., Lewis J.R., Hodgson J.M. Tea and flavonoid intake predict osteoporotic fracture risk in elderly Australian women: A prospective study. Am. J. Clin. Nutr. 2015;102:958–965. doi: 10.3945/ajcn.115.109892.
    1. Ma Y., Gao W., Wu K., Bao Y. Flavonoid intake and the risk of age-related cataract in China’s Heilongjiang Province. Food Nutr. Res. 2015;59:29564. doi: 10.3402/fnr.v59.29564.
    1. Rabassa M., Zamora-Ros R., Andres-Lacueva C., Urpi-Sarda M., Bandinelli S., Ferrucci L., Cherubini A. Association between both total baseline urinary and dietary polyphenols and substantial physical performance decline risk in older adults: A 9-year follow-up of the InCHIANTI study. J. Nutr. Health Aging. 2016;20:478–485. doi: 10.1007/s12603-015-0600-2.
    1. Garcia-Larsen V., Janson C., Niżankowska-Mogilnicka E., Makowska J., Keil T., Potts J., Charles D., Brożek G., Matricardi P., van Zele T., et al. Dietary intake of flavonoids and ventilatory function in European adults: A GA2LEN study. Nutrients. 2018;10:95. doi: 10.3390/nu10010095.
    1. Gopinath B., Liew G., Kifley A., Flood V.M., Joachim N., Lewis J.R., Hodgson J.M., Mitchell P. Dietary flavonoids and the prevalence and 15-y incidence of age-related macular degeneration. Am. J. Clin. Nutr. 2018;108:381–387. doi: 10.1093/ajcn/nqy114.
    1. Pounis G., Costanzo S., de Gaetano G., Donati M.B., Bonaccio M., Persichillo M., Di Castelnuovo A., Iacoviello L., Arcari A. Favorable association of polyphenol-rich diets with lung function: Cross-sectional findings from the Moli-sani study. Respir. Med. 2018;136:48–57. doi: 10.1016/j.rmed.2017.12.007.
    1. Rothwell J.A., Knaze V., Zamora-Ros R. Polyphenols: Dietary assessment and role in the prevention of cancers. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:512–521. doi: 10.1097/MCO.0000000000000424.
    1. Grosso G., Godos J., Lamuela-Raventos R., Ray S., Micek A., Pajak A., Sciacca S., D’Orazio N., Del Rio D., Galvano F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017;61:1600930. doi: 10.1002/mnfr.201600930.
    1. Wang Z.J., Ohnaka K., Morita M., Toyomura K., Kono S., Ueki T., Tanaka M., Kakeji Y., Maehara Y., Okamura T., et al. Dietary polyphenols and colorectal cancer risk: The Fukuoka colorectal cancer study. World J. Gastroenterol. 2013;19:2683–2690. doi: 10.3748/wjg.v19.i17.2683.
    1. Tse G., Eslick G.D. Soy and isoflavone consumption and risk of gastrointestinal cancer: A systematic review and meta-analysis. Eur. J. Nutr. 2016;55:63–73. doi: 10.1007/s00394-014-0824-7.
    1. Hui C., Qi X., Qianyong Z., Xiaoli P., Jundong Z., Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies. PLoS ONE. 2013;8:e54318. doi: 10.1371/journal.pone.0054318.
    1. Cui L., Liu X., Tian Y., Xie C., Li Q., Cui H., Sun C. Flavonoids, flavonoid subclasses, and esophageal cancer risk: A meta-analysis of epidemiologic studies. Nutrients. 2016;8:350. doi: 10.3390/nu8060350.
    1. Ivey K.L., Hodgson J.M., Croft K.D., Lewis J.R., Prince R.L., Urpi-sarda M., Andres-Lacueva C., Ruggiero C., Zamora-Ros R., Bandinelli S., et al. Comparison of various databases for estimation of dietary polyphenol intake in the population of polish adults. Am. J. Clin. Nutr. 2015;102:10269–10281.
    1. Arranz S., Silva J.M., Saura-Calixto F. Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: A study on the Spanish diet. Mol. Nutr. Food Res. 2010;54:1646–1658. doi: 10.1002/mnfr.200900580.
    1. González-Sarrías A., Espín J.C., Tomás-Barberán F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci. Technol. 2017;69:281–288. doi: 10.1016/j.tifs.2017.07.010.
    1. García-Conesa M.-T., Kontogiorgis C., Andrés-Lacueva C., Ristic A.K., Pinto P., Combet E., Rai D., Morand C., Istas G., Gibney E., et al. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. Int. J. Mol. Sci. 2018;19:pii–E694. doi: 10.3390/ijms19030694.
    1. Feliciano R.P., Pritzel S., Heiss C., Rodriguez-Mateos A. Flavonoid intake and cardiovascular disease risk. Curr. Opin. Food Sci. 2015;2:92–99. doi: 10.1016/j.cofs.2015.02.006.
    1. Wang X., Ouyang Y.Y., Liu J., Zhao G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014;111:1–11. doi: 10.1017/S000711451300278X.
    1. Grosso G., Micek A., Godos J., Pajak A., Sciacca S., Galvano F., Giovannucci E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2017;185:1304–1316. doi: 10.1093/aje/kww207.
    1. Rienks J., Barbaresko J., Nöthlings U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: A systematic review and meta-analysis of observational studies. Nutrients. 2017;9:415. doi: 10.3390/nu9040415.
    1. Williamson G., Holst B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Br. J. Nutr. 2008;99:55–58. doi: 10.1017/S0007114508006867.

Source: PubMed

3
Subscribe