Microgravity and Hypergravity Induced by Parabolic Flight Differently Affect Lumbar Spinal Stiffness

Jaap Swanenburg, Anke Langenfeld, Christopher A Easthope, Michael L Meier, Oliver Ullrich, Petra Schweinhardt, Jaap Swanenburg, Anke Langenfeld, Christopher A Easthope, Michael L Meier, Oliver Ullrich, Petra Schweinhardt

Abstract

The objective of this study was to determine the response of the lumbar spinal motor control in different gravitational conditions. This was accomplished by measuring indicators of lumbar motor control, specifically lumbar spinal stiffness, activity of lumbar extensor and flexor muscles and lumbar curvature, in hypergravity and microgravity during parabolic flights. Three female and five male subjects participated in this study. The mean age was 35.5 years (standard deviation: 8.5 years). Spinal stiffness of the L3 vertebra was measured using impulse response; activity of the erector spinae, multifidi, transversus abdominis, and psoas muscles was recorded using surface electromyography; and lumbar curvature was measured using distance sensors mounted on the back-plate of a full-body harness. An effect of gravity condition on spinal stiffness, activity of all muscles assessed and lumbar curvature (p's < 0.007) was observed (Friedman tests). Post hoc analysis showed a significant reduction in stiffness during hypergravity (p < 0.001) and an increase in stiffness during microgravity (p < 0.001). Activity in all muscles significantly increased during hypergravity (p's < 0.001). During microgravity, the multifidi (p < 0.002) and transversus abdominis (p < 0.001) increased significantly in muscle activity while no significant difference was found for the psoas (p = 0.850) and erector spinae muscles (p = 0.813). Lumbar curvature flattened in hypergravity as well as microgravity, albeit in different ways: during hypergravity, the distance to the skin decreased for the upper (p = 0.016) and the lower sensor (p = 0.036). During microgravity, the upper sensor showed a significant increase (p = 0.016), and the lower showed a decrease (p = 0.005) in distance. This study emphasizes the role of spinal motor control adaptations in changing gravity conditions. Both hypergravity and microgravity lead to changes in spinal motor control. The decrease in spinal stiffness during hypergravity is interpreted as a shift of the axial load from the spine to the pelvis and thoracic cage. In microgravity, activity of the multifidi and of the psoas muscles seems to ensure the integrity of the spine. Swiss (BASEC-NR: 2018-00051)/French "EST-III" (Nr-ID-RCB: 2018-A011294-51/Nr-CPP: 18.06.09).

Keywords: hypergravity; lumbar; microgravity; parabolic flight; spine; stiffness.

Copyright © 2020 Swanenburg, Langenfeld, Easthope, Meier, Ullrich and Schweinhardt.

Figures

FIGURE 1
FIGURE 1
Measurements in microgravity during the 71st ESA Parabolic Flight Campaign 2019. Pic by Novespace.
FIGURE 2
FIGURE 2
A schematic of the measurement set-up, for spinal stiffness, muscle activity, and lumbar curvature with two distance sensors.
FIGURE 3
FIGURE 3
Spinal stiffness between different gravity conditions: earth gravity, hypergravity, and microgravity. This was measured via an impulse head impactor mounted on an aluminum structure to which participants were strapped with a full-body harness.
FIGURE 4
FIGURE 4
A schematic of the change in distances of both sensors across the different g conditions.

References

    1. Andreoni G., Rigotti C., Baroni G., Ferrigno G., Colford N. A., Pedotti A. (2000). Quantitative analysis of neutral body posture in prolonged microgravity. Gait Posture 12 235–242. 10.1016/s0966-6362(00)00088-6
    1. Arjmand N., Shirazi-Adl A. (2005). Biomechanics of changes in lumbar posture in static lifting. Spine 30 2637–2648. 10.1097/01.brs.0000187907.02910.4f
    1. Bachrach R. M. (1988). Team physician #3. The relationship of low back/pelvic somatic dysfunctions to dance injuries. Orthopaedic Rev. 17 1037–1043.
    1. Bailey J. F., Miller S. L., Khieu K., O’Neill C. W., Healey R. M., Coughlin D. G., et al. (2018). From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 18 7–14. 10.1016/j.spinee.2017.08.261
    1. Barker K. L., Shamley D. R., Jackson D. (2004). Changes in the cross-sectional area of multifidus and psoas in patients with unilateral back pain: the relationship to pain and disability. Spine 29 E515–E519.
    1. Bergmark A. (1989). Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop. Scand. Suppl. 230 1–54. 10.3109/17453678909154177
    1. Chan S. T., Fung P. K., Ng N. Y., Ngan T. L., Chong M. Y., Tang C. N., et al. (2012). Dynamic changes of elasticity, cross-sectional area, and fat infiltration of multifidus at different postures in men with chronic low back pain. Spine J. 12 381–388. 10.1016/j.spinee.2011.12.004
    1. Chang D. G., Healey R. M., Snyder A. J., Sayson J. V., Macias B. R., Coughlin D. G., et al. (2016). Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station. Spine 41 1917–1924. 10.1097/brs.0000000000001873
    1. Cholewicki J., Simons A. P., Radebold A. (2000). Effects of external trunk loads on lumbar spine stability. J. Biomech. 33 1377–1385. 10.1016/s0021-9290(00)00118-4
    1. Coolican H. (2009). Research Methods and Statistics in Psychology, Fifth Edn London: Hodder Education.
    1. Crevecoeur F., McIntyre J., Thonnard J. L., Lefevre P. (2010). Movement stability under uncertain internal models of dynamics. J. Neurophysiol. 104 1301–1313. 10.1152/jn.00315.2010
    1. Edmondston S. J., Allison G. T., Gregg C. D., Purden S. M., Svansson G. R., Watson A. E. (1998). Effect of position on the posteroanterior stiffness of the lumbar spine. Manual Ther. 3 21–26. 10.1054/math.1998.0312
    1. Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 175–191. 10.3758/bf03193146
    1. Frank C., Kobesova A., Kolar P. (2013). Dynamic neuromuscular stabilization & sports rehabilitation. Int. J. Sports Phys. Ther. 8 62–73.
    1. Gaveau J., Paizis C., Berret B., Pozzo T., Papaxanthis C. (2011). Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning. J. Neurophysiol. 106 620–629. 10.1152/jn.00081.2011
    1. Girod B., Rabenstein R., Stenger A. (2003). Einführung in die Systemtheorie. Wiesbaden: Vieweg+Teubner Verlag.
    1. Granata K. P., Slota G. P., Wilson S. E. (2004). Influence of fatigue in neuromuscular control of spinal stability. Hum. Fact. 46 81–91. 10.1518/hfes.46.1.81.30391
    1. Hausler M., Hofstetter L., Schweinhardt P., Swanenburg J. (2020). Influence of body position and axial load on spinal stiffness in healthy young adults. Eur. Spine J. 29 455–461. 10.1007/s00586-019-06254-0
    1. Hodges P. W., Cholewicki J., van Dieen J. H. (2013). Spinal Control: The Rehabilitation of Back Pain E-Book: State of the Art and Science. Amsterdam: Elsevier Health Sciences.
    1. Hofstetter L., Hausler M., Wirth B., Swanenburg J. (2018). Instrumented measurement of spinal stiffness: a systematic literature review of reliability. J. Manipulative Physiol. Ther. 41 704–711. 10.1016/j.jmpt.2018.03.002
    1. Jiroumaru T., Kurihara T., Isaka T. (2014). Establishment of a recording method for surface electromyography in the iliopsoas muscle. J. Electromyogr. Kinesiol. 24 445–451. 10.1016/j.jelekin.2014.02.007
    1. Johnston C. A., Wiley J. P., Lindsay D. M., Wiseman D. A. (1998). Iliopsoas bursitis and tendinitis. A review. Sports Med. 25 271–283. 10.2165/00007256-199825040-00005
    1. Juker D., McGill S., Kropf P., Steffen T. (1998). Quantitative intramuscular myoelectric activity of lumbar portions of psoas and the abdominal wall during a wide variety of tasks. Med. Sci. Sports Exerc. 30 301–310. 10.1097/00005768-199802000-00020
    1. Katsavrias E., Primetis E., Karandreas N. (2005). Iliopsoas: a new electromyographic technique and normal motor unit action potential values. Clin. Neurophysiol. 116 2528–2532. 10.1016/j.clinph.2005.07.020
    1. Leach R. A., Parker P. L., Veal P. S. (2003). PulStar differential compliance spinal instrument: a randomized interexaminer and intraexaminer reliability study. J. Manipulative Physiol. Ther. 26 493–501. 10.1016/s0161-4754(03)00106-4
    1. LeBlanc A., Lin C., Shackelford L., Sinitsyn V., Evans H., Belichenko O., et al. (2000). Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J. Appl. Physiol. 89 2158–2164. 10.1152/jappl.2000.89.6.2158
    1. Liu Z., Tsai T. Y., Wang S., Wu M., Zhong W., Li J. S., et al. (2016). Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity. J. Biomech. 49 371–375. 10.1016/j.jbiomech.2015.12.029
    1. McGill S., Juker D., Kropf P. (1996). Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine. J. Biomech. 29 1503–1507. 10.1016/0021-9290(96)84547-7
    1. Naserkhaki S., El-Rich M. (2017). Sensitivity of lumbar spine response to follower load and flexion moment: finite element study. Comput. Methods Biomech. Biomed. Eng. 20 550–557. 10.1080/10255842.2016.1257707
    1. Needle A. R., Swanik C. B., Schubert M., Reinecke K., Farquhar W. B., Higginson J. S., et al. (2014). Decoupling of laxity and cortical activation in functionally unstable ankles during joint loading. Eur. J. Appl. Physiol. 114 2129–2138. 10.1007/s00421-014-2929-3
    1. Panjabi M. M. (1992a). The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 5 383–389. 10.1097/00002517-199212000-00001
    1. Panjabi M. M. (1992b). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 5 390–396. 10.1097/00002517-199212000-00002
    1. Penning L. (2000). Psoas muscle and lumbar spine stability: a concept uniting existing controversies. Critical review and hypothesis. Eur. Spine J. 9 577–585. 10.1007/s005860000184
    1. Ritzmann R., Freyler K., Krause A., Gollhofer A. (2016). No neuromuscular side-effects of scopolamine in sensorimotor control and force-generating capacity among parabolic fliers. Micrograv. Sci. Technol. 28 477–490. 10.1007/s12217-016-9504-y
    1. Rodriguez-Soto A. E., Jaworski R., Jensen A., Niederberger B., Hargens A. R., Frank L. R., et al. (2013). Effect of load carriage on lumbar spine kinematics. Spine 38 E783–E791.
    1. Rohlmann A., Petersen R., Schwachmeyer V., Graichen F., Bergmann G. (2012). Spinal loads during position changes. Clin. Biomech. 27 754–758. 10.1016/j.clinbiomech.2012.04.006
    1. Roll R., Gilhodes J. C., Roll J. P., Popov K., Charade O., Gurfinkel V. (1998). Proprioceptive information processing in weightlessness. Exp. Brain Res. 122 393–402. 10.1007/s002210050527
    1. Sayson J. V., Hargens A. R. (2008). Pathophysiology of low back pain during exposure to microgravity. Aviat. Space Environ. Med. 79 365–373. 10.3357/asem.1994.2008
    1. Shirley D., Hodges P. W., Eriksson A. E. M., Gandevia S. C. (2003). Spinal stiffness changes throughout the respiratory cycle. J. Appl. Physiol. 95 1467–1475. 10.1152/japplphysiol.00939.2002
    1. Shirley D., Lee M., Ellis E. (1999). The relationship between submaximal activity of the lumbar extensor muscles and lumbar posteroanterior stiffness. Phys. Ther. 79 278–285. 10.1093/ptj/79.3.278
    1. Spinks A., Wasiak J. (2011). Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Database Syst. Rev. 6: CD002851.
    1. Stokes I. A., Gardner-Morse M. (2003). Spinal stiffness increases with axial load: another stabilizing consequence of muscle action. J. Electromyogr. Kinesiol. 13 397–402. 10.1016/s1050-6411(03)00046-4
    1. Stokes I. A., Henry S. M., Single R. M. (2003). Surface EMG electrodes do not accurately record from lumbar multifidus muscles. Clin. Biomech. 18 9–13. 10.1016/s0268-0033(02)00140-7
    1. Swanenburg J., Meier M. L., Langenfeld A., Schweinhardt P., Humphreys B. K. (2018). Spinal stiffness in prone and upright postures during 0-1.8 g induced by parabolic flight. Aerosp. Med. Hum. Perform. 89 563–567. 10.3357/amhp.5031.2018
    1. Ullrich O., Buhler S. (2019). Examination and evaluation of the parabolic flight fitness. Flugmedizin Tropenme 26 206–211. 10.1055/a-0990-3429

Source: PubMed

3
Subscribe