Targeting potential drivers of COVID-19: Neutrophil extracellular traps

Betsy J Barnes, Jose M Adrover, Amelia Baxter-Stoltzfus, Alain Borczuk, Jonathan Cools-Lartigue, James M Crawford, Juliane Daßler-Plenker, Philippe Guerci, Caroline Huynh, Jason S Knight, Massimo Loda, Mark R Looney, Florencia McAllister, Roni Rayes, Stephane Renaud, Simon Rousseau, Steven Salvatore, Robert E Schwartz, Jonathan D Spicer, Christian C Yost, Andrew Weber, Yu Zuo, Mikala Egeblad, Betsy J Barnes, Jose M Adrover, Amelia Baxter-Stoltzfus, Alain Borczuk, Jonathan Cools-Lartigue, James M Crawford, Juliane Daßler-Plenker, Philippe Guerci, Caroline Huynh, Jason S Knight, Massimo Loda, Mark R Looney, Florencia McAllister, Roni Rayes, Stephane Renaud, Simon Rousseau, Steven Salvatore, Robert E Schwartz, Jonathan D Spicer, Christian C Yost, Andrew Weber, Yu Zuo, Mikala Egeblad

Abstract

Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10-15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils-the ability to form neutrophil extracellular traps (NETs)-may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.

Conflict of interest statement

Disclosures: M.R. Looney reported "other" from Neutrolis outside the submitted work. R.E. Schwartz is a Sponsored Advisory Board Member for Miromatrix Inc. J.D. Spicer reported personal fees from Bristol Myers Squibb, personal fees from Astra Zeneca, personal fees from Merck, personal fees from Trans-Hit Bio, and non-financial support from Astra Zeneca outside the submitted work. C.C. Yost reports a grant from PEEL Therapeutics, Inc. during the conduct of the study; in addition, C.C. Yost authors a US patent (patent no. 10,232,023 B2) held by the University of Utah for the use of NET-inhibitory peptides for "treatment of and prophylaxis against inflammatory disorders." PEEL Therapeutics, Inc. has exclusive licensing rights. M. Egeblad reported "other" from Santhera during the conduct of the study; and consulted for CytomX in 2019. No other disclosures were reported.

© 2020 Barnes et al.

Figures

Figure 1.
Figure 1.
Neutrophils in an autopsy specimen from the lungs of a patient who succumbed from COVID-19.(A) Extensive neutrophil infiltration in pulmonary capillaries, with acute capillaritis with fibrin deposition, and extravasation into the alveolar space. An image was chosen to emphasize the capillary lesions. (B) Neutrophilic mucositis of the trachea. The entire airway was affected (images by A. Borczuk, Weill Cornell Medical Center). Both specimens originate from a 64-yr-old male of Hispanic decent with diabetes, end-stage renal disease on hemodialysis, heart failure, and hepatitis C on ledipasvir/sofosbuvir therapy. He declined medical intervention, was therefore not intubated, and died in the emergency room 5 h after presentation, shortly after developing fever. There was no evidence of sepsis in this patient clinically, premortem cultures were negative, and the autopsy was performed within 5 h of death. Similar neutrophil distribution, but with less extensive infiltration, was observed in the two additional autopsies analyzed to date. These other two cases had longer duration of symptoms. Scale bars: 50 µm.
Figure 2.
Figure 2.
Neutrophils forming NETs in cell culture. Note the expelled DNA strings (arrows). Scanning electron microscopy of neutrophils 3 h after plating and coculturing with 4T1 breast cancer cells. Scale bar: 25 µm.
Figure 3.
Figure 3.
Excess NET formation can drive a variety of severe pathologies. In the lungs, NETs drive the accumulation of mucus in CF patients’ airways. NETs also drive ARDS after a variety of inducers, including influenza. In the vascular system, NETs drive atherosclerosis and aortic aneurysms, as well as thrombosis (particularly microthrombosis), with devastating effects on organ function.
Figure 4.
Figure 4.
Approaches to targeting NETs. NETs can be targeted by existing drugs through several means. NE, PAD4, and gasdermin D inhibitors will prevent NET formation. DNase has been used safely to digest NETs in the mucous secretions of the airways of CF patients. Colchicine inhibits neutrophil migration and infiltration into sites of inflammation. IL1β blockers will prevent an inflammatory loop between NETs and IL1β. Of these approaches, trials to treat COVID-19 with colchicine and anakinra are already ongoing or being launched (ClinicalTrials.gov identifiers: NCT04324021, NCT04330638, NCT02735707, NCT04326790, NCT04328480, NCT04322565, NCT04322682).

References

    1. Adrover J.M., Aroca-Crevillén A., Crainiciuc G., Ostos F., Rojas-Vega Y., Rubio-Ponce A., Cilloniz C., Bonzón-Kulichenko E., Calvo E., Rico D., et al. . 2020. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 21:135–144. 10.1038/s41590-019-0571-2
    1. Bendib I., de Chaisemartin L., Granger V., Schlemmer F., Maitre B., Hüe S., Surenaud M., Beldi-Ferchiou A., Carteaux G., Razazi K., et al. . 2019. Neutrophil Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome. Anesthesiology. 130:581–591. 10.1097/ALN.0000000000002619
    1. Bonow R.O., Fonarow G.C., O’Gara P.T., and Yancy C.W.. 2020. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 10.1001/jamacardio.2020.1105
    1. Borissoff J.I., Joosen I.A., Versteylen M.O., Brill A., Fuchs T.A., Savchenko A.S., Gallant M., Martinod K., Ten Cate H., Hofstra L., et al. . 2013. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler. Thromb. Vasc. Biol. 33:2032–2040. 10.1161/ATVBAHA.113.301627
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., and Zychlinsky A.. 2004. Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535. 10.1126/science.1092385
    1. Calabrese L.H., and Rose-John S.. 2014. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 10:720–727. 10.1038/nrrheum.2014.127
    1. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., Toy P., Werb Z., and Looney M.R.. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J. Clin. Invest. 122:2661–2671. 10.1172/JCI61303
    1. Cedervall J., Zhang Y., Huang H., Zhang L., Femel J., Dimberg A., and Olsson A.K.. 2015. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res. 75:2653–2662. 10.1158/0008-5472.CAN-14-3299
    1. Channappanavar R., and Perlman S.. 2017. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39:529–539. 10.1007/s00281-017-0629-x
    1. Chaput C., and Zychlinsky A.. 2009. Sepsis: the dark side of histones. Nat. Med. 15:1245–1246. 10.1038/nm1109-1245
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., et al. . 2020a Clinical and immunologic features in severe and moderate forms of Coronavirus Disease 2019. MedRxiv. 10.1101/2020.02.16.20023903 (Preprint posted February 19, 2020)
    1. Chen K.W., Monteleone M., Boucher D., Sollberger G., Ramnath D., Condon N.D., von Pein J.B., Broz P., Sweet M.J., and Schroder K.. 2018. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3:eaar6676 10.1126/sciimmunol.aar6676
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. . 2020b Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 395:507–513. 10.1016/S0140-6736(20)30211-7
    1. Chousterman B.G., Swirski F.K., and Weber G.F.. 2017. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 39:517–528. 10.1007/s00281-017-0639-8
    1. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., et al. . 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13:463–469. 10.1038/nm1565
    1. Dhand R. 2017. How Should Aerosols Be Delivered During Invasive Mechanical Ventilation? Respir. Care. 62:1343–1367. 10.4187/respcare.05803
    1. Dinarello C.A. 2009. Targeting the pathogenic role of interleukin 1beta in the progression of smoldering/indolent myeloma to active disease. Mayo Clin. Proc. 84:105–107. 10.4065/84.2.105
    1. Ebrahimi F., Giaglis S., Hahn S., Blum C.A., Baumgartner C., Kutz A., van Breda S.V., Mueller B., Schuetz P., Christ-Crain M., and Hasler P.. 2018. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: secondary analysis of a randomised controlled trial. Eur. Respir. J. 51:1701389 10.1183/13993003.01389-2017
    1. Ferreira R.C., Freitag D.F., Cutler A.J., Howson J.M., Rainbow D.B., Smyth D.J., Kaptoge S., Clarke P., Boreham C., Coulson R.M., et al. . 2013. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9:e1003444 10.1371/journal.pgen.1003444
    1. Fox S.E., Akmatbekov A., Harbert J.L., Li G., Brown J.Q., and Vander Heide R.S.. 2020. Pulmonary and Cardiac Pathology in Covid-19: The First Autopsy Series from New Orleans. MedRxiv 10.1101/2020.04.06.20050575 (Preprint posted April 10, 2020).
    1. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D. Jr., Wrobleski S.K., Wakefield T.W., Hartwig J.H., and Wagner D.D.. 2010. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA. 107:15880–15885. 10.1073/pnas.1005743107
    1. Fuchs T.A., Brill A., and Wagner D.D.. 2012. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 32:1777–1783. 10.1161/ATVBAHA.111.242859
    1. Fuchs T.A., Jiménez-Alcázar M., Göbel J., and Englert H.. 2019. Neutrolis, Inc. US patent application US 2020/0024585 A1, filed August 20, 2019.
    1. Hawkins G.A., Robinson M.B., Hastie A.T., Li X., Li H., Moore W.C., Howard T.D., Busse W.W., Erzurum S.C., Wenzel S.E., et al. . National Heart, Lung, and Blood Institute–sponsored Severe Asthma Research Program (SARP) . 2012. The IL6R variation Asp(358)Ala is a potential modifier of lung function in subjects with asthma. J. Allergy Clin. Immunol. 130:510–5.e1. 10.1016/j.jaci.2012.03.018
    1. Hu J.J., Liu X., Zhao J., Xia S., Ruan J., Luo X., Kim J., Lieberman J., and Wu H.. 2018. Identification of pyroptosis inhibitors that target a reactive cysteine in gasdermin D. bioRxiv 10.1101/365908 (Preprint posted July 10, 2018)
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. . 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Jansen M.P., Emal D., Teske G.J., Dessing M.C., Florquin S., and Roelofs J.J.. 2017. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 91:352–364. 10.1016/j.kint.2016.08.006
    1. Jiménez-Alcázar M., Rangaswamy C., Panda R., Bitterling J., Simsek Y.J., Long A.T., Bilyy R., Krenn V., Renné C., Renné T., et al. . 2017. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 358:1202–1206. 10.1126/science.aam8897
    1. Jorch S.K., and Kubes P.. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23:279–287. 10.1038/nm.4294
    1. Kahlenberg J.M., Carmona-Rivera C., Smith C.K., and Kaplan M.J.. 2013. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190:1217–1226. 10.4049/jimmunol.1202388
    1. Kaplan M.J., and Radic M.. 2012. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 189:2689–2695. 10.4049/jimmunol.1201719
    1. Kessenbrock K., Krumbholz M., Schönermarck U., Back W., Gross W.L., Werb Z., Gröne H.J., Brinkmann V., and Jenne D.E.. 2009. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15:623–625. 10.1038/nm.1959
    1. Lachowicz-Scroggins M.E., Dunican E.M., Charbit A.R., Raymond W., Looney M.R., Peters M.C., Gordon E.D., Woodruff P.G., Lefrançais E., Phillips B.R., et al. . 2019. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am. J. Respir. Crit. Care Med. 199:1076–1085. 10.1164/rccm.201810-1869OC
    1. Laridan E., Martinod K., and De Meyer S.F.. 2019. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin. Thromb. Hemost. 45:86–93. 10.1055/s-0038-1677040
    1. Lefrançais E., and Looney M.R.. 2017. Neutralizing Extracellular Histones in Acute Respiratory Distress Syndrome. A New Role for an Endogenous Pathway. Am. J. Respir. Crit. Care Med. 196:122–124. 10.1164/rccm.201701-0095ED
    1. Lefrançais E., Mallavia B., Zhuo H., Calfee C.S., and Looney M.R.. 2018. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 3:e98178 10.1172/jci.insight.98178
    1. Liu J., Liu Y., Xiang P., Pu L., Xiong H., Li C., Zhang M., Tan J., Xu Y., Song R., et al. . 2020. Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage. MedRxiv 10.1101/2020.02.10.20021584 (Preprint posted February 12, 2020)
    1. Liu S., Su X., Pan P., Zhang L., Hu Y., Tan H., Wu D., Liu B., Li H., Li H., et al. . 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci. Rep. 6:37252 10.1038/srep37252
    1. Lv X., Wen T., Song J., Xie D., Wu L., Jiang X., Jiang P., and Wen Z.. 2017. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir. Res. 18:165 10.1186/s12931-017-0651-5
    1. Manzenreiter R., Kienberger F., Marcos V., Schilcher K., Krautgartner W.D., Obermayer A., Huml M., Stoiber W., Hector A., Griese M., et al. . 2012. Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J. Cyst. Fibros. 11:84–92. 10.1016/j.jcf.2011.09.008
    1. Mao Y., Lin W., Wen J., and Chen G.. 2020. Clinical and pathological characteristics of 2019 novel coronavirus disease (COVID-19): a systematic reviews. MedRxiv 10.1101/2020.02.20.20025601 (Preprint posted March 19, 2020)
    1. Marin V., Montero-Julian F., Grès S., Bongrand P., Farnarier C., and Kaplanski G.. 2002. Chemotactic agents induce IL-6Ralpha shedding from polymorphonuclear cells: involvement of a metalloproteinase of the TNF-alpha-converting enzyme (TACE) type. Eur. J. Immunol. 32:2965–2970. 10.1002/1521-4141(2002010)32:10<2965::AID-IMMU2965>;2-V
    1. Martínez-Alemán S.R., Campos-García L., Palma-Nicolas J.P., Hernández-Bello R., González G.M., and Sánchez-González A.. 2017. Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Front. Cell. Infect. Microbiol. 7:104 10.3389/fcimb.2017.00104
    1. Martinod K., and Wagner D.D.. 2014. Thrombosis: tangled up in NETs. Blood. 123:2768–2776. 10.1182/blood-2013-10-463646
    1. Massberg S., Grahl L., von Bruehl M.L., Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., Lorenz M., Bidzhekov K., Khandagale A.B., et al. . 2010. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16:887–896. 10.1038/nm.2184
    1. Meher A.K., Spinosa M., Davis J.P., Pope N., Laubach V.E., Su G., Serbulea V., Leitinger N., Ailawadi G., and Upchurch G.R. Jr. 2018. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 38:843–853. 10.1161/ATVBAHA.117.309897
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., and Manson J.J.. HLH Across Speciality Collaboration, UK . 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 10.1016/S0140-6736(20)30628-0
    1. Mikacenic C., Moore R., Dmyterko V., West T.E., Altemeier W.A., Liles W.C., and Lood C.. 2018. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit. Care. 22:358 10.1186/s13054-018-2290-8
    1. Nakazawa D., Kumar S.V., Marschner J., Desai J., Holderied A., Rath L., Kraft F., Lei Y., Fukasawa Y., Moeckel G.W., et al. . 2017. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J. Am. Soc. Nephrol. 28:1753–1768. 10.1681/ASN.2016080925
    1. Narasaraju T., Yang E., Samy R.P., Ng H.H., Poh W.P., Liew A.A., Phoon M.C., van Rooijen N., and Chow V.T.. 2011. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179:199–210. 10.1016/j.ajpath.2011.03.013
    1. Oehmcke S., Mörgelin M., and Herwald H.. 2009. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun. 1:225–230. 10.1159/000203700
    1. Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18:134–147. 10.1038/nri.2017.105
    1. Papayannopoulos V., Metzler K.D., Hakkim A., and Zychlinsky A.. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191:677–691. 10.1083/jcb.201006052
    1. Papayannopoulos V., Staab D., and Zychlinsky A.. 2011. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One. 6:e28526 10.1371/journal.pone.0028526
    1. Park J., Wysocki R.W., Amoozgar Z., Maiorino L., Fein M.R., Jorns J., Schott A.F., Kinugasa-Katayama Y., Lee Y., Won N.H., et al. . 2016. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8:361ra138 10.1126/scitranslmed.aag1711
    1. Raup-Konsavage W.M., Wang Y., Wang W.W., Feliers D., Ruan H., and Reeves W.B.. 2018. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 93:365–374. 10.1016/j.kint.2017.08.014
    1. Rohrbach A.S., Slade D.J., Thompson P.R., and Mowen K.A.. 2012. Activation of PAD4 in NET formation. Front. Immunol. 3:360 10.3389/fimmu.2012.00360
    1. Ruan Q., Yang K., Wang W., Jiang L., and Song J.. 2020. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 10.1007/s00134-020-05991-x
    1. Schönrich G., and Raftery M.J.. 2016. Neutrophil Extracellular Traps Go Viral. Front. Immunol. 7:366 10.3389/fimmu.2016.00366
    1. Semeraro F., Ammollo C.T., Morrissey J.H., Dale G.L., Friese P., Esmon N.L., and Esmon C.T.. 2011. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 118:1952–1961. 10.1182/blood-2011-03-343061
    1. Sil P., Wicklum H., Surell C., and Rada B.. 2017. Macrophage-derived IL-1β enhances monosodium urate crystal-triggered NET formation. Inflamm. Res. 66:227–237. 10.1007/s00011-016-1008-0
    1. Sollberger G., Choidas A., Burn G.L., Habenberger P., Di Lucrezia R., Kordes S., Menninger S., Eickhoff J., Nussbaumer P., Klebl B., et al. . 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3:eaar6689 10.1126/sciimmunol.aar6689
    1. Sreeramkumar V., Adrover J.M., Ballesteros I., Cuartero M.I., Rossaint J., Bilbao I., Nácher M., Pitaval C., Radovanovic I., Fukui Y., et al. . 2014. Neutrophils scan for activated platelets to initiate inflammation. Science. 346:1234–1238. 10.1126/science.1256478
    1. Tagami T., Tosa R., Omura M., Fukushima H., Kaneko T., Endo T., Rinka H., Murai A., Yamaguchi J., Yoshikawa K., et al. . 2014. Effect of a selective neutrophil elastase inhibitor on mortality and ventilator-free days in patients with increased extravascular lung water: a post hoc analysis of the PiCCO Pulmonary Edema Study. J. Intensive Care. 2:67 10.1186/s40560-014-0067-y
    1. Thomas G.M., Carbo C., Curtis B.R., Martinod K., Mazo I.B., Schatzberg D., Cifuni S.M., Fuchs T.A., von Andrian U.H., Hartwig J.H., et al. . 2012. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 119:6335–6343. 10.1182/blood-2012-01-405183
    1. von Brühl M.L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M., Khandoga A., Tirniceriu A., Coletti R., Köllnberger M., et al. . 2012. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209:819–835. 10.1084/jem.20112322
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. . 2020. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 323:1061 10.1001/jama.2020.1585
    1. Warnatsch A., Ioannou M., Wang Q., and Papayannopoulos V.. 2015. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 349:316–320. 10.1126/science.aaa8064
    1. Wen F., White G.J., VanEtten H.D., Xiong Z., and Hawes M.C.. 2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol. 151:820–829. 10.1104/pp.109.142067
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., et al. . 2020. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 10.1001/jamainternmed.2020.0994
    1. Wu D., and Yang X.O.. 2020. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect.:S1684-1182(20)30065-7 10.1016/j.jmii.2020.03.005
    1. Wygrecka M., Kosanovic D., Wujak L., Reppe K., Henneke I., Frey H., Didiasova M., Kwapiszewska G., Marsh L.M., Baal N., et al. . 2017. Antihistone Properties of C1 Esterase Inhibitor Protect against Lung Injury. Am. J. Respir. Crit. Care Med. 196:186–199. 10.1164/rccm.201604-0712OC
    1. Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., Taylor F.B., Esmon N.L., Lupu F., and Esmon C.T.. 2009. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15:1318–1321. 10.1038/nm.2053
    1. Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., et al. . 2020. Effective Treatment of Severe COVID-19 Patients with Tocilizumab. ChinaXiv. (Preprint posted March 5, 2020)
    1. Xu Z., Huang Y., Mao P., Zhang J., and Li Y.. 2015. Sepsis and ARDS: The Dark Side of Histones. Mediators Inflamm. 2015:205054 10.1155/2015/205054
    1. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C., Mou H.M., Wang L.H., Zhang H.R., Fu W.J., et al. . 2020. [A pathological report of three COVID-19 cases by minimally invasive autopsies]. Zhonghua Bing Li Xue Za Zhi. 49:E009 10.3760/cma.j.cn112151-20200312-00193
    1. Yost C.C., Schwertz H., Cody M.J., Wallace J.A., Campbell R.A., Vieira-de-Abreu A., Araujo C.V., Schubert S., Harris E.S., Rowley J.W., et al. . 2016. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J. Clin. Invest. 126:3783–3798. 10.1172/JCI83873
    1. Zhang W., Zhao Y., Zhang F., Wang Q., Li T., Liu Z., Wang J., Qin Y., Zhang X., Yan X., et al. . 2020. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 214:108393 10.1016/j.clim.2020.108393
    1. Zhao Z., Xie J., Yin M., Yang Y., He H., Jin T., Li W., Zhu X., Xu J., Zhao C., et al. . 2020. Clinical and Laboratory Profiles of 75 Hospitalized Patients with Novel Coronavirus Disease 2019 in Hefei. MedRxiv, 10.1101/2020.03.01.20029785 (Preprint posted March 6, 2020)
    1. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., and Tian Z.. 2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 10.1038/s41423-020-0402-2
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. . 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 395:1054–1062. 10.1016/S0140-6736(20)30566-3
    1. Zou Y., Chen X., Xiao J., Bo Zhou D., Xiao Lu X., Li W., Xie B., Kuang X., and Chen Q.. 2018. Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget. 9:13276–13286. 10.18632/oncotarget.24022

Source: PubMed

3
Subscribe