The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: risks and potential

Sergii Romanenko, Ryan Begley, Alan R Harvey, Livia Hool, Vincent P Wallace, Sergii Romanenko, Ryan Begley, Alan R Harvey, Livia Hool, Vincent P Wallace

Abstract

Since regular radio broadcasts started in the 1920s, the exposure to human-made electromagnetic fields has steadily increased. These days we are not only exposed to radio waves but also other frequencies from a variety of sources, mainly from communication and security devices. Considering that nearly all biological systems interact with electromagnetic fields, understanding the affects is essential for safety and technological progress. This paper systematically reviews the role and effects of static and pulsed radio frequencies (100-109 Hz), millimetre waves (MMWs) or gigahertz (109-1011 Hz), and terahertz (1011-1013 Hz) on various biomolecules, cells and tissues. Electromagnetic fields have been shown to affect the activity in cell membranes (sodium versus potassium ion conductivities) and non-selective channels, transmembrane potentials and even the cell cycle. Particular attention is given to millimetre and terahertz radiation due to their increasing utilization and, hence, increasing human exposure. MMWs are known to alter active transport across cell membranes, and it has been reported that terahertz radiation may interfere with DNA and cause genomic instabilities. These and other phenomena are discussed along with the discrepancies and controversies from published studies.

Keywords: DNA; cell; electric field; millimetre wave; terahertz radiation; tissue.

Conflict of interest statement

We declare we have no competing interests.

© 2017 The Author(s).

Figures

Figure 1.
Figure 1.
The progress in research measured as number of publications studying the effect of an electric field (a), radio waves (b), MMWs (c) and terahertz radiation (d) on various biology samples (DNA, RNA, proteins, cell membranes, tissues and other biology). The data are taken from the PubMed portal (www.ncbi.nih.gov). (Online version in colour.)
Figure 2.
Figure 2.
Comparison of the heating effects induced by MMW irradiation (filled circles) at three instant power density levels (represented via a sample's temperature) and by gradual bath heating (grey triangles) on changes in the subsequent AP parameters in the Retzius cells of medicinal leech: (a) Δfiring rate at 10 s after initiation of MMW exposure, and average Δfiring rate at 10–60 s after initiation of MMW exposure (b). Data are means ± standard error. **p < 0.01; ***p < 0.001 for one-tailed t-test comparing the MMW and bath heating effects at the heating level of 0.6°C. Linear regression lines are shown for MMW irradiation (solid) and gradual bath heating (dashed). Reproduced from [74].
Figure 3.
Figure 3.
Amplitude spectra of nsPEF pulses of various shapes (speed of rising and decay front). The shapes of four different of nsPEF (60 ns, 1 kV cm−1) are shown in the inset. Note, the Gaussian-shaped pulse has the most monotonic spectrum.
Figure 4.
Figure 4.
The graphic representation of diverse effects on a membrane, organelle and molecular level caused by application of nsPEF pulses to the cells. Data summarized from different studies and obtained from experiments conducted on different cell types. Thus, the involvement of a particular mechanism may vary. Also, depending on nsPEF pulse parameters, the final cell fate could be different as well, which is represented in quatrefoil. (Online version in colour.)
Figure 5.
Figure 5.
The absorption spectra in terahertz range for distilled water (blue), physiological saline —0.9% NaCl (green) and water solution of 100 mM Glycine (red). In lower terahertz range, all three spectra well overlap due to dominant absorption by water. The divergence between absorption spectra for all three samples demonstrated in the inset. Note, the presence of ‘bound’ water causes an increase in absorption.
Figure 6.
Figure 6.
Terahertz imaging of a guinea pig skin scar (made by surgical scissors 7 days prior to imaging and sutured using surgical silk, the skin was shaved prior to imaging). (a) The photograph of the scar (depicted by yellow arrows), the needle was placed on the side of the photograph for orientation and terahertz contrast purposes; (b) terahertz imaging of scar at the superficial layer of the skin, the big dark spots along the scar are left after removal of sutures; (c) terahertz imaging of the scar in depth (approx. 100 µm). Red arrows indicate additional inhomogeneous formations near the scar caused by deeper tissue damage. The scan resolution is 100 µm; the images were acquired with a TeraPulse 4000 (TeraView Ltd, Cambridge, UK).

References

    1. Li H, Sheppard DN, Hug MJ. 2004. Transepithelial electrical measurements with the using chamber. J. Cyst. Fibros. 3, 123–126. (10.1016/j.jcf.2004.05.026)
    1. Wissmann R, Bildl W, Oliver D, Beyermann M, Kalbitzer HR, Bentrop D, Fakler B. 2003. Solution structure and function of the ‘Tandem Inactivation Domain’ of the neuronal A-type potassium channel Kv1.4. J. Biol. Chem. 278, 16 142–16 150. (10.1074/jbc.M210191200)
    1. Enyedi P, Czirjak G. 2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90, 559–605. (10.1152/physrev.00029.2009)
    1. Fröhlich H. 1968. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 2, 641–649. (10.1002/qua.560020505)
    1. McColl IH, Blanch EW, Hecht L, Barron LD. 2004. A study of alpha-helix hydration in polypeptides, proteins, and viruses using vibrational raman optical activity. J. Am. Chem. Soc. 126, 8181–8188. (10.1021/ja048991u)
    1. Kuntz ID Jr, Kauzmann W. 1974. Hydration of proteins and polypeptides. Adv. Protein Chem. 28, 239–345. (10.1016/S0065-3233(08)60232-6)
    1. Levy Y, Onuchic JN. 2006. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35, 389–415. (10.1146/annurev.biophys.35.040405.102134)
    1. Mijailovich SM, Fredberg JJ, Butler JP. 1996. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys. J. 71, 1475–1484. (10.1016/s0006-3495(96)79348-7)
    1. Davydov AS. 1977. Solitons and energy transfer along protein molecules. J. Theor. Biol. 66, 379–387. (10.1016/0022-5193(77)90178-3)
    1. Fröhlich H. 1988. Biological coherence and response to external stimuli. Herbert Fröhlich ed., IX, 268 p Berlin, Germany: Springer.
    1. Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M. 2015. Chloride channels in cancer: focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim. Biophys. Acta 1848, 2523–2531. (10.1016/j.bbamem.2014.12.012)
    1. Wang E. 2003. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J. 17, 333–340. (10.1096/fj.02-0510fje)
    1. Blackiston DJ, McLaughlin KA, Levin M. 2014. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8, 3527–3536. (10.4161/cc.8.21.9888)
    1. Nguyen T, Nioi P, Pickett CB. 2009. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13 291–13 295. (10.1074/jbc.R900010200)
    1. Yang SJ, Liang HL, Ning G, Wong-Riley MTT. 2004. Ultrastructural study of depolarization-induced translocation of NRF-2 transcription factor in cultured rat visual cortical neurons. Eur. J. Neurosci. 19, 1153–1162. (10.1111/j.1460-9568.2004.03250.x)
    1. Cone CD Jr, Cone CM. 1976. Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192, 155–158. (10.1126/science.56781)
    1. Zhou Y, et al. 2015. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349, 873–876. (10.1126/science.aaa5619)
    1. Levin M. 2013. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WIRES. Biol. Med. 5, 657–676. (10.1002/wsbm.1236)
    1. Sabin K, Santos-Ferreira T, Essig J, Rudasill S, Echeverri K. 2015. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl. Dev. Biol. 408, 14–25. (10.1016/j.ydbio.2015.10.012)
    1. Robinson KR. 1985. The responses of cells to electrical fields: a review. J. Cell Biol. 101, 2023–2027. (10.1083/jcb.101.6.2023)
    1. McCaig CD. 2005. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978. (10.1152/physrev.00020.2004)
    1. Krüger J, Bohrmann J. 2015. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles. BMC Dev. Biol. 15, 1 (10.1186/s12861-015-0051-3)
    1. Adams DS, Levin M. 2012. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res. 352, 95–122. (10.1007/s00441-012-1329-4)
    1. Jaffe LF, Nuccitelli R. 1977. Electrical controls of development. Ann. Rev. Biophys. Bioeng. 6, 445–476. (10.1146/annurev.bb.06.060177.002305)
    1. Patel N, Poo MM. 1982. Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2, 483–496.
    1. Hinkle L, McCaig CD, Robinson KR. 1981. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 314, 121–135. (10.1113/jphysiol.1981.sp013695)
    1. Patel NB, Poo MM. 1984. Perturbation of the direction of neurite growth by pulsed and focal electric fields. J. Neurosci. 4, 2939–2947.
    1. Cohen LB, Keynes RD, Hille B. 1968. Light scattering and birefringence changes during nerve activity. Nature 218, 438–441. (10.1038/218438a0)
    1. Cohen LB, Hille B, Keynes RD, Landowne D, Rojas E. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol. 218, 205–237. (10.1113/jphysiol.1971.sp009611)
    1. Son J.-H. 2014. Terahertz biomedical science and technology, 377p Boca Raton, FL: CRC Press.
    1. Bone S, Zaba B. 1992. Bioelectronics, 152 p Chichester, UK: John Wiley & Sons.
    1. Foster KR, Schwan HP. 1989. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17, 25–104.
    1. Gabriel C, Gabriel S, Corthout E. 1996. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41, 2231–2249. (10.1088/0031-9155/41/11/001)
    1. Gabriel S, Lau RW, Gabriel C. 1996. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269. (10.1088/0031-9155/41/11/002)
    1. Gabriel S, Lau RW, Gabriel C. 1996. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293. (10.1088/0031-9155/41/11/003)
    1. Gabriel C. 2005. Dielectric properties of biological tissue: variation with age. Bioelectromagnetics 26(Suppl. 7), S12–S18. (10.1002/bem.20147)
    1. Frey AH. 1962. Human auditory system response to modulated electromagnetic energy. J. Appl. Physiol. 17, 689–692.
    1. Elder JA, Chou CK. 2003. Auditory response to pulsed radiofrequency energy. Bioelectromagnetics 24(Suppl. 6), S162–S173. (10.1002/bem.10163)
    1. Titova LV, Ayesheshim AK, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann FA, Kovalchuk O. 2013. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Sci. Rep. 3, Article number 2363 (10.1038/srep02363)
    1. Hough CM, Purschke DN, Huang C, Titova LV, Kovalchuk O, Warkentin BJ, Hegmann FA. 2017. Biological effects of intense THz pulses on human skin tissue models. In IEEE 42nd International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September. Piscataway, NJ: IEEE.
    1. Frey AH, Messenger R Jr. 1973. Human perception of illumination with pulsed ultrahigh-frequency electromagnetic energy. Science 181, 356–358. (10.1126/science.181.4097.356)
    1. Foster KR, Finch ED. 1974. Microwave hearing: evidence for thermoacoustic auditory stimulation by pulsed microwaves. Science 185, 256–258. (10.1126/science.185.4147.256)
    1. Stocklin PL, Stocklin BF. 1979. Possible microwave mechanisms of the mammalian nervous system. T.-I.-T. J. Life Sci. 9, 29–51.
    1. Vasilevskii NN, Suvorov NB, Medvedeva MV. 1989. Experimental analysis of biological effects of microwaves: their systemic, ultrastructural and neuronal mechanisms. Gig. Sanit. 68, 41–45.
    1. Bazanova ÉB, et al. 1974. Certain methodological problems and results of experimental investigation of the effects of microwaves on microorganisms and animals. Sov. Phys. USP 16, 569–570. (10.1070/PU1974v016n04ABEH005309)
    1. Devyatkov ND. 1974. Influence of millimeter-band electromagnetic radiation on biological objects. Sov. Phys. USP 16, 568–569. (10.1070/PU1974v016n04ABEH005308)
    1. Smolyanskaya AZ, Vilenskaya RL. 1974. Effects of millimeter-band electromagnetic radiation on the functional activity of certain genetic elements of bacterial cells. Sov. Phys. USP 16, 571–572. (10.1070/PU1974v016n04ABEH005311)
    1. Kondrat'eva VF, Chistyakova EN, Shmakova IF, Ivanova NB, Treskunov AA. 1974. Effects of millimeter-band radio waves on certain properties of bacteria. Sov. Phys. USP 16, 572–573. (10.1070/PU1974v016n04ABEH005312)
    1. Zalyubovskaya NP. 1974. Reactions of living organisms to exposure to millimeter-band electromagnetic waves. Sov. Phys. USP 16, 574–576. (10.1070/PU1974v016n04ABEH005316)
    1. Devyatkov ND, Pletnyov SD, Betskii OV, Faikin VV. 2001. Effect of low-energy and high-peak-power nanosecond pulses of microwave radiation on malignant tumors. Crit. Rev. Biomed. Eng. 29, 98–110. (10.1615/CritRevBiomedEng.v29.i1.40)
    1. Sinitsyn NI, Petrosyan VI, Yolkin VA, Devyatkov ND, Gulyaev Yu V, Betskii OV. 2000. Special function of the ‘millimeter wavelength waves-aqueous medium’ system in nature. Crit. Rev. Biomed. Eng. 28, 269–305. (10.1615/CritRevBiomedEng.v28.i12.430)
    1. Betskii OV, Devyatkov ND, Kislov VV. 2000. Low intensity millimeter waves in medicine and biology. Crit. Rev. Biomed. Eng. 28, 247–268. (10.1615/CritRevBiomedEng.v28.i12.420)
    1. Williams R, et al. 2013. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation. Phys. Med. Biol. 58, 373–391. (10.1088/0031-9155/58/2/373)
    1. Bock J, et al. 2010. Mammalian stem cells reprogramming in response to terahertz radiation. PLoS ONE 5, e15806 (10.1371/journal.pone.0015806)
    1. Weightman P. 2012. Prospects for the study of biological systems with high power sources of terahertz radiation. Phys. Biol. 9, 053001 (10.1088/1478-3975/9/5/053001)
    1. Fröhlich H, Kremer F. 1983. Coherent excitations in biological systems, 1st edn, IX, 224 p Berlin, Germany: Springer.
    1. Grundler W, Keilmann F. 1983. Sharp resonances in yeast growth prove nonthermal sensitivity to microwaves. Phys. Rev. Lett. 51, 1214–1216. (10.1103/PhysRevLett.51.1214)
    1. Belyaev I. 2009. Nonthermal biological effects of microwaves: current knowledge, further perspective, and urgent needs. Electromagn Biol. Med. 24, 375–403. (10.1080/15368370500381844)
    1. Titova LV, Ayesheshim AK, Golubov A, Fogen D, Rodriguez-Juarez R, Hegmann FA, Kovalchuk O. 2013. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue. Biomed. Optic. Exp. 4, 559 (10.1364/boe.4.000559)
    1. Holder GM, et al. 2012. Fundamental differences in model cell-surface polysaccharides revealed by complementary optical and spectroscopic techniques. Soft Matter 8, 6521 (10.1039/c2sm25239b)
    1. Kleine-Ostmann T, et al. 2014. Field exposure and dosimetry in the THz frequency range. IEEE Trans. Terahertz Sci. Technol. 4, 12–25. (10.1109/tthz.2013.2293115)
    1. Adey WR, Bawin SM, Lawrence AF. 1982. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioelectromagnetics 3, 295–307. (10.1002/bem.2250030302)
    1. McRee DI, Wachtel H. 1979. A microwave exposure system for marine animals: dosimetry and reflectometric observations. Radio Sci. 14, 75–79. (10.1029/RS014i06Sp00075)
    1. Blackman CF, Elder JA, Weil CM, Benane SG, Eichinger DC, House DE. 1979. Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength. Radio Sci. 14, 93–98. (10.1029/RS014i06Sp00093)
    1. Bawin SM, Kaczmarek LK, Adey WR. 1975. Effects of modulated Vhf fields on the central nervous system. Ann. NY Acad. Sci. 247, 74–81. (10.1111/j.1749-6632.1975.tb35984.x)
    1. Mitchell CL, McRee DI, Peterson NJ, Tilson HA. 1988. Some behavioral effects of short-term exposure of rats to 2.45 GHz microwave radiation. Bioelectromagnetics 9, 259–268. (10.1002/bem.2250090307)
    1. Panel DNGE, Brusick D, Albertini R, McRee D, Peterson D, Williams G, Hanawalt P, Preston J. 1998. Genotoxicity of radiofrequency radiation. Environ. Mol. Mutagen 32, 1–16. (10.1002/(sici)1098-2280(1998)32:1%3C1::aid-em1%;2-q)
    1. Allis JW, Blackman CF, Fromme ML, Benane SG. 1977. Measurement of microwave radiation absorbed by biological systems: 1. Analysis of heating and cooling data. Radio Sci. 12, 1–8. (10.1029/RS012i06Sp00001)
    1. Beneduci A, Cosentino K, Chidichimo G. 2013. Millimeter wave radiations affect membrane hydration in phosphatidylcholine vesicles. Materials 6, 2701–2712. (10.3390/ma6072701)
    1. Cosentino K, Beneduci A, Ramundo-Orlando A, Chidichimo G. 2013. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J. Biol. Phys. 39, 395–410. (10.1007/s10867-012-9296-2)
    1. Wachtel H, Seaman R, Joines W. 1975. Effects of low-intensity microwaves on isolated neurons. Ann. NY Acad. Sci. 247, 46–62. (10.1111/j.1749-6632.1975.tb35982.x)
    1. Alekseev SI, Ziskin MC, Kochetkova NV, Bolshakov MA. 1997. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron. Bioelectromagnetics 18, 89–98. (10.1002/(SICI)1521-186X(1997)18:2%3C89::AID-BEM1%;2-0)
    1. Romanenko S, Siegel PH, Pikov V. 2013. Microdosimetry and physiological effects of millimeter wave irradiation in isolated neural ganglion preparation, pp. 512–516.
    1. Romanenko S, Siegel PH, Wagenaar DA, Pikov V. 2014. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J. Neurophysiol. 112, 2423–2431. (10.1152/jn.00357.2014)
    1. Romanenko S, Siegel PH, Pikov V, Wallace V. 2016. Alterations in neuronal action potential shape and spiking rate caused by pulsed 60 GHz millimeter wave radiation In 41st Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September, pp. 1–2. Piscataway, NJ: IEEE.
    1. Wilmink GJ, Romanenko S, Siegel PH, Wagenaar DA, Pikov V, Ibey BL. 2013. Comparison of the effects of millimeter wave irradiation, general bath heating, and localized heating on neuronal activity in the leech ganglion In Proceedings Volume 8585, Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, San Francisco, CA, 2–7 February Bellingham, WA: SPIE.
    1. Adair RK. 2003. Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24, 39–48. (10.1002/bem.10061)
    1. Albini M, Dinarelli S, Pennella F, Romeo S, Zampetti E, Girasole M, Morbiducci U, Massa R, Ramundo-Orlando A. 2014. Induced movements of giant vesicles by millimeter wave radiation. Biochim. Biophys. Acta 1838, 1710–1718. (10.1016/j.bbamem.2014.03.021)
    1. Di Donato L, Cataldo M, Stano P, Massa R, Ramundo-Orlando A. 2012. Permeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiation. Radiat. Res. 178, 437–446. (10.1667/RR2949.1)
    1. Ramundo-Orlando A, Longo G, Cappelli M, Girasole M, Tarricone L, Beneduci A, Massa R. 2009. The response of giant phospholipid vesicles to millimeter waves radiation. Biochim. Biophys. Acta 1788, 1497–1507. (10.1016/j.bbamem.2009.04.006)
    1. Ramundo-Orlando A, Morbiducci U, Mossa G, D'Inzeo G. 2000. Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase: I. Evidence for charged lipid involvement. Bioelectromagnetics 21, 491–498. (10.1002/1521-186X(200010)21:7%3C491::AID-BEM2%;2-%23)
    1. Ramundo-Orlando A, Liberti M, Mossa G, d'Inzeo G. 2004. Effects of 2.45 GHz microwave fields on liposomes entrapping glycoenzyme ascorbate oxidase: Evidence for oligosaccharide side chain involvement. Bioelectromagnetics 25, 338–345. (10.1002/bem.10203)
    1. Beneduci A, Cosentino K, Romeo S, Massa R, Chidichimo G. 2014. Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. Soft Matter 10, 5559–5567. (10.1039/c4sm00551a)
    1. Beneduci A, Filippelli L, Cosentino K, Calabrese ML, Massa R, Chidichimo G. 2012. Microwave induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry 84, 18–24. (10.1016/j.bioelechem.2011.10.003)
    1. Zhadobov M, Sauleau R, Vie V, Himdi M, Le Coq L, Thouroude D. 2006. Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans. Microwave Theory Tech. 54, 2534–2542. (10.1109/tmtt.2006.875811)
    1. Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC. 2006. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 27, 233–244. (10.1002/bem.20202)
    1. Pikov V, Arakaki X, Harrington M, Fraser SE, Siegel PH. 2010. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J. Neural Eng. 7, 045003 (10.1088/1741-2560/7/4/045003)
    1. Alekseev SI, Gordiienko OV, Radzievsky AA, Ziskin MC. 2010. Millimeter wave effects on electrical responses of the sural nerve in vivo. Bioelectromagnetics 31, 180–190. (10.1002/bem.20547)
    1. Makar VR, Logani MK, Bhanushali A, Kataoka M, Ziskin MC. 2005. Effect of millimeter waves on natural killer cell activation. Bioelectromagnetics 26, 10–19. (10.1002/bem.20046)
    1. Sun S, Titushkin I, Varner J, Cho M. 2012. Millimeter wave-induced modulation of calcium dynamics in an engineered skin co-culture model: role of secreted ATP on calcium spiking. J. Radiat. Res. 53, 159–167. (10.1269/jrr.11037)
    1. Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. 1998. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 19, 393–413. (10.1002/(SICI)1521-186X(1998)19:7%3C393::AID-BEM1%;2-X)
    1. Alekseev SI, Ziskin MC. 1995. Millimeter microwave effect on ion transport across lipid bilayer membranes. Bioelectromagnetics 16, 124–131. (10.1002/bem.2250160209)
    1. Salford LG, Brun A, Sturesson K, Eberhardt JL, Persson BRR. 1994. Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50, and 200 Hz. Microsc. Res. Tech. 27, 535–542. (10.1002/jemt.1070270608)
    1. Kittel Á, Siklós L, Thuróczy G, Somosy Z. 1996. Qualitative enzyme histochemistry and microanalysis reveals changes in ultrastructural distribution of calcium and calcium-activated ATPases after microwave irradiation of the medial habenula. Acta Neuropathol. 92, 362–368. (10.1007/s004010050531)
    1. Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann KA. 1997. Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81, 627–639. (10.1016/S0306-4522(97)00228-5)
    1. Fritze K, Sommer C, Schmitz B, Mies G, Hossmann KA, Kiessling M, Wiessner C. 1997. Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 94, 465–470. (10.1007/s004010050734)
    1. Morrissey JJ, Raney S, Heasley E, Rathinavelu P, Dauphinee M, Fallon JH. 1999. IRIDIUM exposure increases c-fos expression in the mouse brain only at levels which likely result in tissue heating. Neuroscience 92, 1539–1546. (10.1016/s0306-4522(99)00091-3)
    1. Hossmann KA, Hermann DM. 2003. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics 24, 49–62. (10.1002/bem.10068)
    1. Haarala C, Bjornberg L, Ek M, Laine M, Revonsuo A, Koivisto M, Hamalainen H. 2003. Effect of a 902 MHz electromagnetic field emitted by mobile phones on human cognitive function: a replication study. Bioelectromagnetics 24, 283–288. (10.1002/bem.10105)
    1. Beneduci A. 2009. Evaluation of the potential In Vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem. Biophys. 55, 25–32. (10.1007/s12013-009-9053-8)
    1. Beneduci A, Chidichimo G, Tripepi S, Perrotta E, Cufone F. 2007. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changes. Bioelectrochemistry 70, 214–220. (10.1016/j.bioelechem.2006.07.008)
    1. Zhadobov M, Chahat N, Sauleau R, Le Quement C, Le Drean Y. 2011. Millimeter-wave interactions with the human body: state of knowledge and recent advances. Int. J. Microw. Wirel. T. 3, 237–247. (10.1017/S1759078711000122)
    1. Manna D, Ghosh R. 2016. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol. Med. 35, 265–301. (10.3109/15368378.2015.1092158)
    1. Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA. 2003. Calcium bursts induced by nanosecond electric pulses. Biochem. Biophys. Res. Commun. 310, 286–295. (10.1016/j.bbrc.2003.08.140)
    1. Schoenbach KH, Beebe SJ, Buescher ES. 2001. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22, 440–448. (10.1002/bem.71)
    1. Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH. 2003. Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol. 22, 785–796. (10.1089/104454903322624993)
    1. Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH. 2003. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J. 17, 1493–1495. (10.1096/fj.02-0859fje)
    1. Vernier PT, Sun Y, Chen MT, Gundersen MA, Craviso GL. 2008. Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73, 1–4. (10.1016/j.bioelechem.2008.02.003)
    1. Vernier PT, Sun Y, Gundersen MA. 2006. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol. 7, 37 (10.1186/1471-2121-7-37)
    1. Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA. 2004. Nanoelectropulse-induced phosphatidylserine translocation. Biophys. J. 86, 4040–4048. (10.1529/biophysj.103.037945)
    1. Vernier PT, Sun Y, Wang J, Thu MM, Garon E, Valderrabano M, Marcu L, Koeffler HP, Gundersen MA. 2006. Nanoelectropulse intracellular perturbation and electropermeabilization technology: phospholipid translocation, calcium bursts, chromatin rearrangement, cardiomyocyte activation, and tumor cell sensitivity In Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, 17–18 January, pp. 5850–5853. Piscataway, NJ: IEEE.
    1. Vernier PT, Ziegler MJ, Dimova R. 2009. Calcium binding and head group dipole angle in phosphatidylserine-phosphatidylcholine bilayers. Langmuir 25, 1020–1027. (10.1021/la8025057)
    1. Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP. 2006. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J. Am. Chem. Soc. 128, 6288–6289. (10.1021/ja0588306)
    1. Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP. 2006. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico. Phys. Biol. 3, 233–247. (10.1088/1478-3975/3/4/001)
    1. Ibey BL, Mixon DG, Payne JA, Bowman A, Sickendick K, Wilmink GJ, Roach WP, Pakhomov AG. 2010. Plasma membrane permeabilization by trains of ultrashort electric pulses. Bioelectrochemistry 79, 114–121. (10.1016/j.bioelechem.2010.01.001)
    1. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH. 2009. Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem. Biophys. Res. Commun. 385, 181–186. (10.1016/j.bbrc.2009.05.035)
    1. Ibey BL, Xiao S, Schoenbach KH, Murphy MR, Pakhomov AG. 2009. Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose. Bioelectromagnetics 30, 92–99. (10.1002/bem.20451)
    1. Romanenko S, Arnaud-Cormos D, Leveque P, O'Connor RP. 2016. Ultrashort pulsed electric fields induce action potentials in neurons when applied at axon bundles In Conf.: 2016 9th Int. Kharkiv Symp. on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Kharkiv, Ukraine, 20–24, June, pp. 1–5. Piscataway, NJ: IEEE.
    1. Guerrero-Hernandez A, Beebe SJ, Chen Y-J, Sain NM, Schoenbach KH, Xiao S. 2012. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS ONE 7, e51349 (10.1371/journal.pone.0051349)
    1. Wilmink GJ, Xiao S, Pakhomov A, Guo F, Polisetty S, Schoenbach KH, Ibey BL. 2013. Neurostimulation using subnanosecond electric pulses In Proc. SPIE 8585, Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 85850M, San Francisco, CA, 23 February Bellingham, WA: SPIE.
    1. Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ. 2010. Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch. Biochem. Biophys. 497, 82–89. (10.1016/j.abb.2010.03.008)
    1. Hall EH, Schoenbach KH, Beebe SJ. 2007. Nanosecond pulsed electric fields have differential effects on cells in the S-phase. DNA Cell Biol. 26, 160–171. (10.1089/dna.2006.0514)
    1. Schoenbach KH, Joshi R, Kolb J, Buescher S, Beebe S. 2004. Subcellular effects of nanosecond electrical pulses In Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA, 1–5 September,, vol. 7, pp. 5447–5450. Piscataway, NJ: IEEE.
    1. Semenov I, Xiao S, Kang D, Schoenbach KH, Pakhomov AG. 2015. Cell stimulation and calcium mobilization by picosecond electric pulses. Bioelectrochemistry 105, 65–71. (10.1016/j.bioelechem.2015.05.013)
    1. Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB. 2005. Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys. J. 89, 274–284. (10.1529/biophysj.104.054494)
    1. Xiao S, Guo S, Nesin V, Heller R, Schoenbach KH. 2011. Subnanosecond electric pulses cause membrane permeabilization and cell death. IEEE Trans. Biomed. Eng. 58, 1239–1245. (10.1109/TBME.2011.2112360)
    1. Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D, Leveque P, O'Connor RP. 2017. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K +, Ca 2+ and TRPM8 channels in U87 glioblastoma cells. Biochim. Biophys. Acta 1859, 2040–2050. (10.1016/j.bbamem.2017.07.004)
    1. Ramundo OA, Gallerano GP. 2009. Terahertz radiation effects and biological applications. J. Infrared Millim. TE 30, 1308–1318. (10.1007/s10762-009-9561-z)
    1. Svanberg S. 1992. Atomic and molecular spectroscopy, vol. 6, p. 407 Berlin, Germany: Springer.
    1. Korter TM, Plusquellic DF. 2004. Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared. Chem. Phys. Lett. 385, 45–51. (10.1016/j.cplett.2003.12.060)
    1. Markelz AG, Roitberg A, Heilweil EJ. 2000. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48. (10.1016/s0009-2614(00)00227-x)
    1. McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS. 2012. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chem. Soc. Rev. 41, 2072–2082. (10.1039/c1cs15277g)
    1. Brown ER, Bjarnason JE, Fedor AM, Korter TM. 2007. On the strong and narrow absorption signature in lactose at 0.53THz. Appl. Phys. Lett. 90, 061908 (10.1063/1.2437107)
    1. Wilmink GJ, et al. 2011. In vitro investigation of the biological effects associated with human dermal fibroblasts exposed to 2.52 THz radiation. Lasers Surg. Med. 43, 152–163. (10.1002/lsm.20960)
    1. Hintzsche H, et al. 2013. Terahertz radiation at 0.380 THz and 2.520 THz does not lead to dna damage in skin Cells in vitro. Radiat. Res. 179, 38–45. (10.1667/rr3077.1)
    1. Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. 2008. Terahertz radiation increases genomic instability in human lymphocytes. Radiat. Res. 170, 224–234. (10.1667/rr0944.1)
    1. Xu M, Xiong S. 1988. FIR laser irradiation in wheat. Appl. Infr. Optoelectron. 4, 30.
    1. Peng S. 1987. Influence of submillimeter laser radiation on the growth of black beans. Appl. Laser 7, 169.
    1. Fedorov VI, Bakharev GF. 2010. Influence of THz radiation on early phase of seed germinating and yield of wheat In Proc. SPIE 7993, ICONO 2010: Int. Conf. on Coherent and Nonlinear Optics, 799327, Kazan, Russia, 23–26 August Bellingham, WA: SPIE.
    1. Hadjiloucas S, Chahal MS, Bowen JW. 2002. Preliminary results on the non-thermal effects of 200 350 GHz radiation on the growth rate of S. cerevisiaecells in microcolonies. Phys. Med. Biol. 47, 3831–3839. (10.1088/0031-9155/47/21/322)
    1. Wilmink GJ, Grundt JE. 2011. Invited review article: current state of research on biological effects of terahertz radiation. J. Infrared Millim. TE. 32, 1074–1122. (10.1007/s10762-011-9794-5)
    1. Weisman NY, Fedorov VI, Nemova EF, Nikolaev NA. 2014. Survival and life span of Drosophila melanogaster in response to terahertz radiation. Adv. Gerontol. 4, 187–192. (10.1134/s2079057014030102)
    1. Bondar NP, Kovalenko IL, Avgustinovich DF, Khamoyan AG, Kudryavtseva NN. 2008. Behavioral effect of terahertz waves in male mice. Bull. Exp. Biol. Med. 145, 401–405. (10.1007/s10517-008-0102-x)
    1. Kirichuk VF, Efimova NV, Andronov EV. 2010. Effect of high power terahertz irradiation on platelet aggregation and behavioral reactions of albino rats. Bull. Exp. Biol. Med. 148, 746–749. (10.1007/s10517-010-0807-5)
    1. Kirichuk VF, Antipova ON, Krylova YA. 2014. Effect of continuous irradiation with terahertz electromagnetic waves of the NO frequency range on behavioral reactions of male albino rats under stress conditions. Bull. Exp. Biol. Med. 157, 184–189. (10.1007/s10517-014-2521-1)
    1. Abbas A, Thomas D, Croix D, Salzet M, Bocquet B. 2009. Ex-vivo detection of neural events using THz BioMEMS. Med. Sci. Monit. 15, 121–125.
    1. Gallerano GP, et al. 2004. THz-BRIDGE: a European project for the study of the interaction of terahertz radiation with biological systems In Conf. Digest of the 2004 Joint 29th Int. Conf. on Infrared and Millimeter Waves and 12th Int. Conf. on Terahertz Electronics, pp. 817–818. Piscataway, NJ: IEEE.
    1. Thomas LW. 1962. The chemical composition of adipose tissue of man and mice. Quart. J. Exp. Physiol. Cognate Med. Sci. 47, 179–188. (10.1113/expphysiol.1962.sp001589)
    1. Taylor ZD, et al. 2011. THz medical imaging: in vivo hydration sensing. IEEE Trans. Terahertz Sci. Technol. 1, 201–219. (10.1109/TTHZ.2011.2159551)
    1. Turner AJ. 1986. Biochemistry and the central nervous system (fifth edition). Biochem. Educ. 14, 46 (10.1016/0307-4412(86)90054-3)
    1. Ronne C, Thrane L, Åstrand P-O, Wallqvist A, Mikkelsen KV, Keiding SR. 1997. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. J. Chem. Phys. 107, 5319–5331. (10.1063/1.474242)
    1. Pickwell E, Wallace VP. 2006. Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301 (10.1088/0022-3727/39/17/R01)
    1. Suh J.-S. 2014. Terahertz Characteristics of Water and Liquids. In Terahertz biomedical science and technology (ed. Son J-H.), pp. 117–134. Boca Raton, FL: CRC Press.
    1. Kindt JT, Schmuttenmaer CA. 1996. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 100, 10 373–10 379. (10.1021/jp960141g)
    1. Smye SW, Chamberlain JM, Fitzgerald AJ, Berry E. 2001. The interaction between terahertz radiation and biological tissue. Phys. Med. Biol. 46, R101–R112. (10.1088/0031-9155/46/9/201)
    1. Mashimo S, Kuwabara S, Yagihara S, Higasi K. 1987. Dielectric relaxation time and structure of bound water in biological materials. J. Phys. Chem. 91, 6337–6338. (10.1021/j100309a005)
    1. Nandi N, Bagchi B. 1997. Dielectric relaxation of biological water†. J. Phys. Chem. B 101, 10 954–10 961. (10.1021/jp971879g)
    1. Pickwell E, Cole BE, Fitzgerald AJ, Wallace VP, Pepper M. 2004. Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. 84, 2190–2192. (10.1063/1.1688448)
    1. Xu J, Plaxco KW, Allen SJ, Bjarnason JE, Brown ER. 2007. 0.15–3.72THz absorption of aqueous salts and saline solutions. Appl. Phys. Lett. 90, 031 908 (10.1063/1.2430781)
    1. Matsuoka T, Fujita S, Mae S. 1996. Effect of temperature on dielectric properties of ice in the range 5–39 GHz. J. Appl. Phys. 80, 5884–5890. (10.1063/1.363582)
    1. Zhang C, Lee K-S, Zhang XC, Wei X, Shen YR. 2001. Optical constants of ice Ih crystal at terahertz frequencies. Appl. Phys. Lett. 79, 491–493. (10.1063/1.1386401)
    1. Rønne C, Keiding SR. 2002. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. J. Mol. Liq. 101, 199–218. (10.1016/s0167-7322(02)00093-4)
    1. Thrane L, Jacobsen RH, Uhd Jepsen P, Keiding SR. 1995. THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 240, 330–333. (10.1016/0009-2614(95)00543-d)
    1. Wallace VP, Fitzgerald AJ, Pickwell E, Pye RJ, Taday PF, Flanagan N, Ha T. 2006. Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl. Spectrosc. 60, 1127–1133. (10.1366/000370206778664635)
    1. Fan S, Pickwell-MacPherson E, Wallace VP. 2016. Preliminary study of different scar types with terahertz imaging In Proc. 41st Int. Conf. on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz), Copenhagen, Denmark, 25–30 September Piscataway, NJ: IEEE.
    1. Antoine R, et al. 2002. Electric dipole moments and conformations of isolated peptides. Eur. Phys. J. D 20, 583–587. (10.1140/epjd/e2002-00149-4)
    1. Wyman J, McMeekin TL. 1933. The dielectric constant of solutions of amino acids and peptides. J. Am. Chem. Soc. 55, 908–914. (10.1021/ja01330a006)
    1. Fonseca TL, Sabino JR, Castro MA, Georg HC. 2010. A theoretical investigation of electric properties of L-arginine phosphate monohydrate including environment polarization effects. J. Chem. Phys. 133, 144103 (10.1063/1.3501237)
    1. Matei A, Drichko N, Gompf B, Dressel M. 2005. Far-infrared spectra of amino acids. Chem. Phys. 316, 61–71. (10.1016/j.chemphys.2005.04.033)
    1. Rodríguez-Arteche I, Cerveny S, Alegría Á, Colmenero J. 2012. Dielectric spectroscopy in the GHz region on fully hydrated zwitterionic amino acids. Phys. Chem. Chem. Phys. 14, 11352 (10.1039/c2cp41496a)
    1. Creed D. 2008. The photophysics and photochemistry of the near-UV absorbing amino acids-I. Tryptophan and its simple derivatives. Photochem. Photobiol. 39, 537–562. (10.1111/j.1751-1097.1984.tb03890.x)
    1. Zhang X.-C. 2014. Nonlinear interaction of amino acids and proteins with terahertz waves. In Terahertz biomedical science and technology, 1st edn (ed. Son J-H.), pp. 211–240. Boca Raton, FL: CRC Press.
    1. Sponer J, Leszczynski J, Hobza P. 2001. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61, 3–31. (10.1002/1097-0282(2001)61:1%3C3::aid-bip10048%;2-4)
    1. Franz J, Gianturco FA. 2014. Low-energy positron scattering from DNA nucleobases: the effects from permanent dipoles. Eur. Phys. J. D 68 (10.1140/epjd/e2014-50072-0)
    1. Fischer B, Walther M, Jepsen PU. 2002. Far-infrared spectroscopy of hydrogen bonding in nucleobases, nucleosides, and nucleotides In Proc. IEEE Tenth Int. Conf. on Terahertz Electronics, Cambridge, UK, 10 September, pp. 74–76. Piscataway, NJ: IEEE.
    1. Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmid E, Schrader T. 2011. Terahertz radiation induces spindle disturbances in human-hamster hybrid cells. Radiat. Res. 175, 569–574. (10.1667/rr2406.1)
    1. Fischer BM, Helm H, Jepsen PU. 2007. Chemical recognition with broadband THz spectroscopy. Proc. IEEE 95, 1592–1604. (10.1109/jproc.2007.898904)
    1. Liu H.-B, Zhang XC. 2006. Dehydration kinetics of D-glucose monohydrate studied using THz time-domain spectroscopy. Chem. Phys. Lett. 429, 229–233. (10.1016/j.cplett.2006.07.100)
    1. Bolus MF, Balci S, Wilbert DS, Kung P, Kim SM. 2013. Effects of saline on terahertz absorption of aqueous glucose at physiological concentrations probed by THz spectroscopy In Conf. Paper published Sep 2013 in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September, pp. 1–2. Piscataway, NJ: IEEE.
    1. Ge M, Zhao H, Ji T, Yu X, Wang W, Li W. 2006. Terahertz time-domain spectroscopy of some pentoses. Science 49, 204–208. (10.1007/s11426-006-0204-0)
    1. Šišak D, McCusker LB, Zandomeneghi G, Meier BH, Bläser D, Boese R, Schweizer WB, Gilmour R, Dunitz JD. 2010. The crystal structure of D-Ribose-at last! Angew. Chem. Int. Ed. 49, 4503–4505. (10.1002/anie.201001266)
    1. Hunger J, Bernecker A, Bakker Huib J, Bonn M, Richter Ralf P. 2012. Hydration dynamics of hyaluronan and dextran. Biophys. J. 103, L10–L12. (10.1016/j.bpj.2012.05.028)
    1. Dordick JS. 1992. Designing enzymes for use in organic solvents. Biotechnol. Prog. 8, 259–267. (10.1021/bp00016a001)
    1. Klibanov A. 1989. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem. Sci. 14, 141–144. (10.1016/0968-0004(89)90146-1)
    1. Markelz A. 2014. Protein dielectric response at terahertz frequencies: correlated and diffusive contributions. In Terahertz biomedical science and technology (ed. Son J-H.), pp. 195–210. Boca Raton, FL: CRC Press.
    1. Chen J-Y, Knab JR, Ye S, He Y, Markelz AG. 2007. Terahertz dielectric assay of solution phase protein binding. Appl. Phys. Lett. 90, 243901 (10.1063/1.2748852)
    1. Genzel L, Powell JW, Wittlin A, Bauer M. 1988. Lam dynamics of intrinsically bent DNA. Ferroelectrics 86, 301–310. (10.1080/00150198808227021)
    1. Duong TH, Zakrzewska K. 1997. Calculation and analysis of low frequency normal modes for DNA. J. Comput. Chem. 18, 796–811. (10.1002/(sici)1096-987x(19970430)18:6%3C796::aid-jcc5%;2-n)
    1. Feng Y, Prohofsky EW. 1990. Vibrational fluctuations of hydrogen bonds in a DNA double helix with nonuniform base pairs. Biophys. J. 57, 547–553. (10.1016/s0006-3495(90)82570-4)
    1. Saxena VK, Dorfman BH, Van Zandt LL. 1991. Identifying and interpreting spectral features of dissolved poly(dA)-poly(dT) DNA polymer in the high-microwave range. Phys. Rev. A 43, 4510–4516. (10.1103/PhysRevA.43.4510)
    1. Wittlin A, Genzel L, Kremer F, Häseler S, Poglitsch A, Rupprecht A. 1986. Far-infrared spectroscopy on oriented films of dry and hydrated DNA. Phys. Rev. A 34, 493–500. (10.1103/PhysRevA.34.493)
    1. Nagel M, Bolivar PH, Brucherseifer M, Kurz H, Bosserhoff A, Buttner R. 2002. Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. Appl. Opt. 41, 2074–2078. (10.1364/AO.41.002074)
    1. Nagel M, Haring Bolivar P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R. 2002. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156. (10.1063/1.1428619)
    1. Alexandrov BS, Gelev V, Bishop AR, Usheva A, Rasmussen KO. 2010. DNA breathing dynamics in the presence of a terahertz field. Phys. Lett. A 374, 1214 (10.1016/j.physleta.2009.12.077)
    1. Alexandrov BS, et al. 2013. Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells. Sci. Rep. 3, Article number:1184 (10.1038/srep01184)
    1. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M. 2007. An extended dynamical hydration shell around proteins. Proc. Natl Acad. Sci. USA 104, 20 749–20 752. (10.1073/pnas.0709207104)
    1. Bye JW, Meliga S, Ferachou D, Cinque G, Zeitler JA, Falconer RJ. 2014. Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation. J. Phys. Chem. A 118, 83–88. (10.1021/jp407410g)
    1. Wallace VP, Ferachou D, Ke P, Day K, Uddin S, Casas-Finet J, Van Der Walle CF, Falconer RJ, Zeitler JA. 2015. Modulation of the hydration water around monoclonal antibodies on addition of excipients detected by terahertz time-domain spectroscopy. J. Pharm. Sci. 104, 4025–4033. (10.1002/jps.24630)
    1. Capaccioli S, Ngai KL, Ancherbak S, Rolla PA, Shinyashiki N. 2011. The role of primitive relaxation in the dynamics of aqueous mixtures, nano-confined water and hydrated proteins. J. Non-Cryst. Solids 357, 641–654. (10.1016/j.jnoncrysol.2010.07.054)
    1. Brosnan JT, Brosnan ME. 2006. The sulfur-containing amino acids: an overview. J. Nutr. 136, 1636S–1640S.
    1. Chen MC, Lord RC. 1976. Laser-excited Raman spectroscopy of biomolecules. VIII. Conformational study of bovine serum albumin. J. Am. Chem. Soc. 98, 990–992. (10.1021/ja00420a021)
    1. Devlin MT, Barany G, Levin IW. 1990. Conformational properties of asymmetrically substituted mono-, di- and trisulfides: solid and liquid phase Raman spectra. J. Mol. Struct. 238, 119–137. (10.1016/0022-2860(90)85011-7)
    1. Thamann TJ. 1999. A vibrational spectroscopic assignment of the disulfide bridges in recombinant bovine growth hormone and growth hormone analogs. Spectrochim. Acta, Part A 55, 1661–1666. (10.1016/s1386-1425(98)00322-9)
    1. Cherkasova OP, Fedorov VI, Nemova EF, Pogodin AS. 2009. Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin. Opt. Spectrosc. 107, 534–537. (10.1134/s0030400X09100063)
    1. Petrich JW, Chang MC, McDonald DB, Fleming GR. 1983. On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 105, 3824–3832. (10.1021/ja00350a014)
    1. Makino Y, Amada K, Taguchi H, Yoshida M. 1997. Chaperonin-mediated folding of green fluorescent protein. J. Biol. Chem. 272, 12 468–12 474. (10.1074/jbc.272.19.12468)
    1. Groma GI, Hebling J, Kozma IZ, Varo G, Hauer J, Kuhl J, Riedle E. 2008. Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes. Proc. Natl Acad. Sci. USA 105, 6888–6893. (10.1073/pnas.0706336105)
    1. Homenko A, Kapilevich B, Kornstein R, Firer MA. 2009. Effects of 100 GHz radiation on alkaline phosphatase activity and antigen-antibody interaction. Bioelectromagnetics 30, 167–175. (10.1002/bem.20466)
    1. Alexandrov BS, et al. 2011. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells. Biomed. Optic. Exp. 2, 2679 (10.1364/boe.2.002679)
    1. Zhao L, Hao Y.-H, Peng R-Y. 2014. Advances in the biological effects of terahertz wave radiation. Mil. Med. Res. 1, 26 (10.1186/s40779-014-0026-x)
    1. McCormick DL, Hintzsche H, Jastrow C, Kleine-Ostmann T, Kärst U, Schrader T, Stopper H. 2012. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro. PLoS ONE 7, e46397 (10.1371/journal.pone.0046397)

Source: PubMed

3
Subscribe