Cross-sectional and longitudinal atrophy is preferentially associated with tau rather than amyloid β positron emission tomography pathology

Brian A Gordon, Austin McCullough, Shruti Mishra, Tyler M Blazey, Yi Su, John Christensen, Aylin Dincer, Kelley Jackson, Russ C Hornbeck, John C Morris, Beau M Ances, Tammie L S Benzinger, Brian A Gordon, Austin McCullough, Shruti Mishra, Tyler M Blazey, Yi Su, John Christensen, Aylin Dincer, Kelley Jackson, Russ C Hornbeck, John C Morris, Beau M Ances, Tammie L S Benzinger

Abstract

Introduction: Structural magnetic resonance imaging is a marker of gray matter health and decline that is sensitive to impaired cognition and Alzheimer's disease pathology. Prior work has shown that both amyloid β (Aβ) and tau biomarkers are related to cortical thinning, but it is unclear what unique influences they have on the brain.

Methods: Aβ pathology was measured with [18F] AV-45 (florbetapir) positron emission tomography (PET) and tau was assessed with [18F] AV-1451 (flortaucipir) PET in a population of 178 older adults, of which 123 had longitudinal magnetic resonance imaging assessments (average of 5.7 years) that preceded the PET acquisitions.

Results: In cross-sectional analyses, greater tau PET pathology was associated with thinner cortices. When examined independently in longitudinal models, both Aβ and tau were associated with greater antecedent loss of gray matter. However, when examined in a combined model, levels of tau, but not Aβ, were still highly related to change in cortical thickness.

Discussion: Measures of tau PET are strongly related to gray matter atrophy and likely mediate relationships between Aβ and gray matter.

Keywords: Amyloid; Atrophy; MRI; PET; Positron emission tomography; Tau; Thickness.

Figures

Fig. 1
Fig. 1
The relationship between global AD pathology and gray matter. Three GLMs were implemented to estimate vertex-wise relationships between (A) global tau PET summary measure, (B) Aβ mean cortical SUVR, or (C) global tau controlling for Aβ, and left-hemisphere cross-sectional cortical thickness. Spatiotemporal LMEs models were used to investigate relationships between (D) global tau and time from initial MRI, (E) global Aβ and time, or (F) global tau and time controlling for Aβ and time, and antecedent longitudinal change in cortical thickness. All models controlled for the main effects of gender, current age, and scan resolution. Cross-sectional models used the Qdec multiple comparisons correction (FDR) procedure at P < .025 level to approximate comparisons in both hemispheres. Longitudinal models used the LME FDR2 comparisons correction in MATLAB and accounted for comparisons in both hemispheres. Values depicted from each model are thresholded at the level of significance identified by their respective FDR procedures. Abbreviations: Aβ, amyloid β; AD, Alzheimer's disease; FDR, false discovery rate; GLM, general linear model; LMEs, linear mixed-effects; MRI, magnetic resonance imaging; PET, positron emission tomography; SUVR, standardized uptake value ratio.
Fig. 2
Fig. 2
The relationship between local AD pathology and gray matter. Linear mixed-effects models were implemented to model region-wise relationships between (A) local tau and time, (B) local Aβ and time, or (C) local tau and time controlling for local Aβ and time, on longitudinal local cortical thickness in all 34 FreeSurfer cortical regions. All models controlled for the main effects of gender, age, and scan resolution. Both hemispheres' values were averaged together. Values depicted are adjusted −log10(P) values after FDR correction for multiple comparisons. Abbreviations: AD, Alzheimer's disease; FDR, false discovery rate.

References

    1. Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H.C., Vermersch P. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992;55:967–972.
    1. Jack C.R., Petersen R.C., Xu C.Y., Waring S.C., Brien P.C.O., Tangalos E.G. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology. 1997;49:786–794.
    1. Baron J.C., Chételat G., Desgranges B., Perchey G., Landeau B., de la Sayette V. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage. 2001;14:298–309.
    1. Dickerson B.C., Bakkour A., Salat D.H., Feczko E., Pacheco J., Greve D.N. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.
    1. Sabuncu M.R., Desikan R.S., Sepulcre J., Yeo B.T.T., Liu H., Schmansky N.J. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol. 2011;68:1040–1048.
    1. Karas G.B., Scheltens P., Rombouts S.A., Visser P.J., Van Schijndel R.A., Fox N.C. Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. Neuroimage. 2004;23:708–716.
    1. Schultz S.A., Oh J.M., Koscik R.L., Dowling N.M., Gallagher C.L., Carlsson C.M. Subjective memory complaints, cortical thinning, and cognitive dysfunction in middle-age adults at risk of AD. Alzheimers Dement. 2015;1:33–40.
    1. Gordon B.A., Blazey T., Su Y., Fagan A.M., Holtzman D.M., Morris J.C. Longitudinal β-Amyloid deposition and hippocampal volume in preclinical Alzheimer disease and suspected non–Alzheimer disease pathophysiology. JAMA Neurol. 2016;73:1192–1200.
    1. Wang L., Benzinger T.L., Hassenstab J., Blazey T., Owen C., Liu J. Spatially distinct atrophy is linked to β-amyloid and tau in preclinical Alzheimer disease. Neurology. 2015;84:1254–1260.
    1. Chételat G., Villemagne V.L., Villain N., Jones G., Ellis K.A., Ames D. Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology. 2012;78:477–484.
    1. Devanand D.P., Pradhaban G., Liu X., Khandji A., De Santi S., Segal S. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology. 2007;68:828–836.
    1. Apostolova L.G., Dutton R.A., Dinov I.D., Hayashi K.M., Toga A.W., Cummings J.L. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol. 2006;63:693–699.
    1. Bakkour A., Morris J.C., Dickerson B.C. The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology. 2009;72:1048–1055.
    1. Bernal-Rusiel J.L., Reuter M., Greve D.N., Fischl B., Sabuncu M.R. Spatiotemporal linear mixed effects modeling for the mass-univariate analysis of longitudinal neuroimage data. Neuroimage. 2013;81:358–370.
    1. Dickerson B.C., Stoub T.R., Shah R.C., Sperling R a, Killiany R.J., Albert M.S. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology. 2011;76:1395–1402.
    1. Chételat G., Villemagne V.L., Bourgeat P., Pike K.E., Jones G., Ames D. Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol. 2010;67:317–324.
    1. Archer H.A., Edison P., Brooks D.J., Barnes J., Frost C., Yeatman T. Amyloid load and cerebral atrophy in Alzheimers disease: An 11 C-PIB positron emission tomography study. Ann Neurol. 2006;60:145–147.
    1. Chien D.T., Bahri S., Szardenings A.K., Walsh J.C., Mu F., Su M.Y. Early clinical PET imaging results with the novel PHF-Tau Radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–468.
    1. Marquie M., Normandin M.D., Vanderburg C.R., Costantino I., Bien E.A., Rycyna L.G. Validating novel tau PET tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.
    1. Lowe V.J., Curran G., Fang P., Liesinger A.M., Josephs K.A., Parisi J.E. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun. 2016;4:58.
    1. Xia C.-F., Arteaga J., Chen G., Gangadharmath U., Gomez L.F., Kasi D. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement. 2013;9:666–676.
    1. Brier M.R., Gordon B., Friedrichsen K., McCarthy J., Stern A., Christensen J. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med. 2016;8:338ra66.
    1. Gordon B.A., Friedrichsen K., Brier M., Blazey T., Su Y., Christensen J. The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain. 2016;139:2249–2260.
    1. Johnson K.A., Schultz A., Betensky R.A., Becker J.A., Sepulcre J., Rentz D. Tau PET imaging in aging and early Alzheimer's disease. Ann Neurol. 2016;79:110–119.
    1. Schöll M., Lockhart S.N., Schonhaut D.R., Schwimmer H.D., Rabinovici G.D., Correspondence W.J. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–982.
    1. Cho H., Choi J.Y., Hwang M.S., Lee J.H., Kim Y.J., Lee H.M. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016;87:375–383.
    1. Day G.S., Gordon B.A., Jackson K., Christensen J.J., Rosana Ponisio M., Su Y. Tau-PET binding distinguishes patients with early-stage posterior cortical atrophy from amnestic Alzheimer disease dementia. Alzheimer Dis Assoc Disord. 2017;31:87–93.
    1. Schwarz A.J., Yu P., Miller B.B., Shcherbinin S., Dickson J., Navitsky M. Regional profiles of the candidate tau PET ligant 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–1550.
    1. Chhatwal J.P., Schultz A.P., Marshall G.A., Boot B., Gomez-Isla T., Dumurgier J. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly. Neurology. 2016;87:920–926.
    1. Mishra S., Gordon B.A., Su Y., Christensen J., Friedrichsen K., Jackson K. AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: defining a summary measure. Neuroimage. 2017;161:171–178.
    1. Bischof G.N., Jessen F., Fliessbach K., Dronse J., Hammes J., Neumaier B. Impact of tau and amyloid burden on glucose metabolism in Alzheimer's disease. Ann Clin Transl Neurol. 2016;3:934–939.
    1. Ossenkoppele R., Schonhaut D.R., Schöll M., Lockhart S.N., Ayakta N., Baker S.L. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–1567.
    1. Smith R., Wibom M., Olsson T., Hägerström D., Jögi J., Rabinovici G.D. Posterior accumulation of tau and concordant hypometabolism in an early-onset Alzheimer's disease patient with presenilin-1 mutation. J Alzheimers Dis. 2016;51:339–343.
    1. Wang L., Benzinger T.L., Su Y., Christensen J., Friedrichsen K., Aldea P. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between β-Amyloid and tauopathy. JAMA Neurol. 2016;73:1070.
    1. LaPoint M.R., Chhatwal J.P., Sepulcre J., Johnson K.A., Sperling R.A., Schultz A.P. The association between tau PET and retrospective cortical thinning in clinically normal elderly. Neuroimage. 2017;157:612–622.
    1. Xia C., Makaretz S.J., Caso C., McGinnis S., Gomperts S.N., Sepulcre J. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 2017;74:427.
    1. Mattsson N., Schöll M., Strandberg O., Smith R., Palmqvist S., Insel P.S. (18)F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer's disease. EMBO Mol Med. 2017;9:1212–1223.
    1. Morris J.C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–2414.
    1. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–781.
    1. Fischl B., Dale A.M.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–11055.
    1. Reuter M., Schmansky N.J., Rosas H.D., Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–1418.
    1. Su Y., D'Angelo G.M., Vlassenko A.G., Zhou G., Snyder A.Z., Marcus D.S. Quantitative Analysis of PiB-PET with FreeSurfer ROIs. PLoS One. 2013;8:e73377.
    1. Brendel M., Högenauer M., Delker A., Sauerbeck J., Bartenstein P., Seibyl J. Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–459.
    1. Su Y., Blazey T.M., Snyder A.Z., Raichle M.E., Hornbeck R.C., Aldea P. Quantitative Amyloid imaging using image-derived arterial input function. PLoS One. 2015;10:e0122920.
    1. Rousset O.G., Ma Y., Evans A.C. Correction for partial volume effects in PET: Principle and validation. J Nucl Med. 1998;39:904–911.
    1. Bernal-Rusiel J.L., Greve D.N., Reuter M., Fischl B., Sabuncu M.R., for the Alzheimer's Disease Neuroimaging I Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. Neuroimage. 2012;66C:249–260.
    1. Jack C.R., Knopman D.S., Jagust W.J., Petersen R.C., Weiner M.W., Aisen P.S. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–216.
    1. Bateman R.J., Xiong C., Benzinger T.L.S., Fagan A.M., Goate A., Fox N.C. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367:795–804.
    1. Vlassenko A.G., McCue L., Jasielec M.S., Su Y., Gordon B.A., Xiong C. Imaging and cerebrospinal fluid biomarkers in early preclinical Alzheimer disease. Ann Neurol. 2016;80:379–387.
    1. Palmqvist S., Mattsson N., Hansson O., Alzheimer's Disease Neuroimaging Initiative Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139:1226–1236.

Source: PubMed

3
Subscribe