Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases

Giovanni Coppola, Subashchandrabose Chinnathambi, Jason JiYong Lee, Beth A Dombroski, Matt C Baker, Alexandra I Soto-Ortolaza, Suzee E Lee, Eric Klein, Alden Y Huang, Renee Sears, Jessica R Lane, Anna M Karydas, Robert O Kenet, Jacek Biernat, Li-San Wang, Carl W Cotman, Charles S Decarli, Allan I Levey, John M Ringman, Mario F Mendez, Helena C Chui, Isabelle Le Ber, Alexis Brice, Michelle K Lupton, Elisavet Preza, Simon Lovestone, John Powell, Neill Graff-Radford, Ronald C Petersen, Bradley F Boeve, Carol F Lippa, Eileen H Bigio, Ian Mackenzie, Elizabeth Finger, Andrew Kertesz, Richard J Caselli, Marla Gearing, Jorge L Juncos, Bernardino Ghetti, Salvatore Spina, Yvette M Bordelon, Wallace W Tourtellotte, Matthew P Frosch, Jean Paul G Vonsattel, Chris Zarow, Thomas G Beach, Roger L Albin, Andrew P Lieberman, Virginia M Lee, John Q Trojanowski, Vivianna M Van Deerlin, Thomas D Bird, Douglas R Galasko, Eliezer Masliah, Charles L White, Juan C Troncoso, Didier Hannequin, Adam L Boxer, Michael D Geschwind, Satish Kumar, Eva-Maria Mandelkow, Zbigniew K Wszolek, Ryan J Uitti, Dennis W Dickson, Jonathan L Haines, Richard Mayeux, Margaret A Pericak-Vance, Lindsay A Farrer, Alzheimer's Disease Genetics Consortium, Owen A Ross, Rosa Rademakers, Gerard D Schellenberg, Bruce L Miller, Eckhard Mandelkow, Daniel H Geschwind, Giovanni Coppola, Subashchandrabose Chinnathambi, Jason JiYong Lee, Beth A Dombroski, Matt C Baker, Alexandra I Soto-Ortolaza, Suzee E Lee, Eric Klein, Alden Y Huang, Renee Sears, Jessica R Lane, Anna M Karydas, Robert O Kenet, Jacek Biernat, Li-San Wang, Carl W Cotman, Charles S Decarli, Allan I Levey, John M Ringman, Mario F Mendez, Helena C Chui, Isabelle Le Ber, Alexis Brice, Michelle K Lupton, Elisavet Preza, Simon Lovestone, John Powell, Neill Graff-Radford, Ronald C Petersen, Bradley F Boeve, Carol F Lippa, Eileen H Bigio, Ian Mackenzie, Elizabeth Finger, Andrew Kertesz, Richard J Caselli, Marla Gearing, Jorge L Juncos, Bernardino Ghetti, Salvatore Spina, Yvette M Bordelon, Wallace W Tourtellotte, Matthew P Frosch, Jean Paul G Vonsattel, Chris Zarow, Thomas G Beach, Roger L Albin, Andrew P Lieberman, Virginia M Lee, John Q Trojanowski, Vivianna M Van Deerlin, Thomas D Bird, Douglas R Galasko, Eliezer Masliah, Charles L White, Juan C Troncoso, Didier Hannequin, Adam L Boxer, Michael D Geschwind, Satish Kumar, Eva-Maria Mandelkow, Zbigniew K Wszolek, Ryan J Uitti, Dennis W Dickson, Jonathan L Haines, Richard Mayeux, Margaret A Pericak-Vance, Lindsay A Farrer, Alzheimer's Disease Genetics Consortium, Owen A Ross, Rosa Rademakers, Gerard D Schellenberg, Bruce L Miller, Eckhard Mandelkow, Daniel H Geschwind

Abstract

Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.

Figures

Figure 1.
Figure 1.
Domain structure of tau. The diagram shows the domain structure of htau40wt and mutation at tau40A152T [largest isoform in the human central nervous system (CNS), 441 residues] and htau23 (smallest isoform in human CNS, 352 residues). Tau domains are broadly divided into the N- terminal ‘projection domain’ (amino acids M1-Y197) and the C-terminal ‘assembly domain’ (amino acids Y198-L441). The C-terminal assembly domain includes three or four pseudo-repeats (∼31 residues each, R1–R4), which together with their proline-rich flanking regions (P1 and P2) constitute the microtubule-binding region. Repeat R2 and the two near-N-terminal inserts (I1 and I2) may be absent due to alternative splicing. The repeat domain also forms the core of PHFs. The fetal isoform of htau23 has a similar domain structure but lacks the inserts I1, I2 and R2 in the repeat region. The p.A152T substitution is unusual in that it lies far outside the repeat domain, in contrast to most FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome-17) tau mutations.
Figure 2.
Figure 2.
Aggregation of tau and the p.A152T mutant. (A) Aggregation of htau40wt and p.A152T mutant monitored by the ThS fluorescence assay in the presence of the cofactor heparin. The aggregation of tauA152T is somewhat slower and reaches a somewhat lower final level of aggregation, but overall the assembly characteristics are comparable. (B and C) SDS gels showing soluble and aggregated tau (S, supernatant; P, pellet), along with molecular weight markers. Both tau and tauA152T show a major band around 60 kDa and some fragments at lower molecular weights. (D and E) Quantification of the proteins of (B) and (C). Note that mutant tau (E) aggregates less extensively than the wild-type protein (D) by this assay. (F and G) Electron micrographs of filaments formed from htau40wt and the mutant p.A152T. Note that the filament preparations from mutant tau are more fragile and contain more oligomers.
Figure 3.
Figure 3.
Microtubule assembly induced by htau40wt and the p.A152T mutant. (A) Microtubule assembly induced by wild-type tau (black curve, top) and mutant tau (red curve, middle) monitored by light scattering at 350 nm. Note that mutant tau is much less efficient in stabilizing microtubules than wild-type tau. As a control, tubulin alone without tau does not assemble in these conditions (blue curve, bottom). (B and C) Binding of tau to polymerized microtubules in (A). The proteins were incubated for several time periods (10–30 min), separated by pelleting and analyzed by SDS–PAGE. S, supernatant; P, pellet. Tau is visible as a sharp band above the broad band of tubulin. (D and E) Quantification of (B) and (C). Note that wild-type tau is mostly bound to microtubules (∼75%) and therefore appears in the pellet (red bars in D). In contrast, mutant tau binds much more weakly (only ∼20–30%) and remains mostly in the supernatant (black bars in E).
Figure 4.
Figure 4.
Binding of tau to preformed taxol-stabilized microtubules. Stable microtubules were first assembled in the presence of 30 µm taxol and then incubated with wild-type or mutant tau at different concentrations of tau (250 nm to 1 µm) (with tubulin fixed at 30 µm). The microtubules with bound tau were separated from soluble tau by pelleting and analyzed by SDS–PAGE. (A and B) SDS gels showing soluble and assembled fractions of tau and tubulin. (C and D) Quantitation of (A) and (B). Note that wild-type tau is mostly bound to microtubules (red bars), whereas a large fraction of mutant tau does not bind and remains soluble.
Figure 5.
Figure 5.
Aggregation propensity and microtubule assembly of htau23wt and htau23A152T. (A) Aggregation of htau23wt and p.A152T mutant monitored by the ThS fluorescence assay in the presence of the cofactor heparin. The aggregation of tau23A152T is somewhat slower and reaches a somewhat lower final level of aggregation, but overall the assembly characteristics are comparable. (B) Microtubule assembly induced by wild-type tau (black curve, top) and mutant tau (red curve, middle) monitored by light scattering at 350 nm. Note that mutant tau is much less efficient in stabilizing microtubules than wild-type tau. As a control, tubulin alone without tau does not assemble in these conditions (blue curve, bottom).

References

    1. Josephs K.A. Frontotemporal dementia and related disorders: deciphering the enigma. Ann. Neurol. 2008;64:4–14. .
    1. Bird T., Knopman D., VanSwieten J., Rosso S., Feldman H., Tanabe H., Graff-Raford N., Geschwind D., Verpillat P., Hutton M. Epidemiology and genetics of frontotemporal dementia/Pick's disease. Ann. Neurol. 2003;54(Suppl. 5)):S29–S31. .
    1. Neumann M., Tolnay M., Mackenzie I.R. The molecular basis of frontotemporal dementia. Expert Rev. Mol. Med. 2009;11:e23. .
    1. McKhann G.M., Albert M.S., Grossman M., Miller B., Dickson D., Trojanowski J.Q. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch. Neurol. 2001;58:1803–1809. .
    1. Rohrer J., Warren J. Phenotypic signatures of genetic frontotemporal dementia. Curr. Opin. Neurol. 2011;24:542–549. .
    1. Wolfe M. Tau mutations in neurodegenerative diseases. J. Biol. Chem. 2009;284:6021–6025. .
    1. Malkani R., D'Souza I., Gwinn-Hardy K., Schellenberg G.D., Hardy J., Momeni P. A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiol. Dis. 2006;22:401–403. .
    1. Kalinderi K., Fidani L., Bostantjopoulou S. From 1997 to 2007: a decade journey through the H1 haplotype on 17q21 chromosome. Parkinsonism Relat. Disord. 2009;15:2–5. .
    1. Rademakers R., Eriksen J.L., Baker M., Robinson T., Ahmed Z., Lincoln S.J., Finch N., Rutherford N.J., Crook R.J., Josephs K.A., et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet. 2008;17:3631–3642. .
    1. Van Deerlin V., Sleiman P., Martinez-Lage M., Chen-Plotkin A., Wang L.-S., Graff-Radford N., Dickson D., Rademakers R., Boeve B., Grossman M., et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 2010;42:234–239. .
    1. Hutton M.L., Heutink P., Goate A.M., Brown S.M. 1999 US Patent No. 09/302964/1999.
    1. Kovacs G.G., Wohrer A., Strobel T., Botond G., Attems J., Budka H. Unclassifiable tauopathy associated with an A152T variation in MAPT exon 7. Clin. Neuropathol. 2011;30:3–10.
    1. Barghorn S., Mandelkow E. Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry. 2002;41:14885–14896. .
    1. Maeda S., Sahara N., Saito Y., Murayama M., Yoshiike Y., Kim H., Miyasaka T., Murayama S., Ikai A., Takashima A. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007;46:3856–3861. .
    1. Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., Geschwind D.H., Bird T.D., McKeel D., Goate A., et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 1998;282:1914–1917. .
    1. Manolio T., Collins F., Cox N., Goldstein D., Hindorff L., Hunter D., McCarthy M., Ramos E., Cardon L., Chakravarti A., et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. .
    1. Dickson S., Wang K., Krantz I., Hakonarson H., Goldstein D. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294. .
    1. Wray N., Purcell S., Visscher P. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol. 2011;9:e1000579. .
    1. Goldstein D. The importance of synthetic associations will only be resolved empirically. PLoS Biol. 2011;9:e1001008. .
    1. Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L., Boerwinkle E., Cohen J., Hobbs H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008;40:1461–1465. .
    1. Simon-Sanchez J., Schulte C., Bras J.M., Sharma M., Gibbs J.R., Berg D., Paisan-Ruiz C., Lichtner P., Scholz S.W., Hernandez D.G., et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 2009;41:1308–1312. .
    1. Singleton A., Hardy J. A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum. Mol. Genet. 2011;20:R158–R162. .
    1. Bansal V., Libiger O., Torkamani A., Schork N. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010;11:773–785. .
    1. Ladouceur M., Dastani Z., Aulchenko Y., Greenwood C., Richards J. The empirical power of rare variant association methods: results from Sanger sequencing in 1,998 individuals. PLoS Genet. 2012;8:e1002496. .
    1. O'Roak B.J., Deriziotis P., Lee C., Vives L., Schwartz J.J., Girirajan S., Karakoc E., Mackenzie A.P., Ng S.B., Baker C., et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 2011;43:585–589. .
    1. Sebat J., Lakshmi B., Malhotra D., Troge J., Lese-Martin C., Walsh T., Yamrom B., Yoon S., Krasnitz A., Kendall J., et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–449. .
    1. Hardy J., Duff K., Hardy K.G., Perez-Tur J., Hutton M. Genetic dissection of Alzheimer's disease and related dementias: amyloid and its relationship to tau. Nat. Neurosci. 1998;1:355–358. .
    1. Myers A., Pittman A., Zhao A., Rohrer K., Kaleem M., Marlowe L., Lees A., Leung D., McKeith I., Perry R., et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 2007;25:561–570. .
    1. Mukherjee O., Kauwe J.S., Mayo K., Morris J.C., Goate A.M. Haplotype-based association analysis of the MAPT locus in late onset Alzheimer's disease. BMC Genet. 2007;8:3. .
    1. Abraham R., Sims R., Carroll L., Hollingworth P., O'Donovan M.C., Williams J., Owen M.J. An association study of common variation at the MAPT locus with late-onset Alzheimer's disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009;150B:1152–1155. .
    1. Rogaeva E., Meng Y., Lee J.H., Gu Y., Kawarai T., Zou F., Katayama T., Baldwin C.T., Cheng R., Hasegawa H., et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 2007;39:168–177.
    1. Lambert J.-C., Heath S., Even G., Campion D., Sleegers K., Hiltunen M., Combarros O., Zelenika D., Bullido M., Tavernier B.A., et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat. Genet. 2009;41:1094–1099. .
    1. Dumanchin C., Camuzat A., Campion D., Verpillat P., Hannequin D., Dubois B., Saugier-Veber P., Martin C., Penet C., Charbonnier F., et al. Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum. Mol. Genet. 1998;7:1825–1829. .
    1. Rizzu P., Hinkle D.A., Zhukareva V., Bonifati V., Severijnen L.A., Martinez D., Ravid R., Kamphorst W., Eberwine J.H., Lee V.M., et al. DJ-1 colocalizes with tau inclusions: a link between parkinsonism and dementia. Ann. Neurol. 2004;55:113–118. .
    1. Barghorn S., Zheng-Fischhofer Q., Ackmann M., Biernat J., von Bergen M., Mandelkow E.M., Mandelkow E. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry. 2000;39:11714–11721. .
    1. Gustke N., Trinczek B., Biernat J., Mandelkow E.M., Mandelkow E. Domains of tau protein and interactions with microtubules. Biochemistry. 1994;33:9511–9522. .
    1. Illenberger S., Zheng-Fischhofer Q., Preuss U., Stamer K., Baumann K., Trinczek B., Biernat J., Godemann R., Mandelkow E.M., Mandelkow E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer's disease. Mol. Biol. Cell. 1998;9:1495–1512.
    1. Mukrasch M.D., Bibow S., Korukottu J., Jeganathan S., Biernat J., Griesinger C., Mandelkow E., Zweckstetter M. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 2009;7:e34. .
    1. Meraz-Ríos M., Lira-De León K., Campos-Peña V., De Anda-Hernández M., Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J. Neurochem. 2010;112:1353–1367. .
    1. Sahara N., Maeda S., Takashima A. Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr. Alzheimer Res. 2008;5:591–598. .
    1. Coppola G., Miller B., Chui H., Varpetian A., Levey A., Cotman C., Decarli C., Bartzokis G., Kukull W., Foroud T., et al. Genetic investigation in frontotemporal dementia and Alzheimer's disease: the GIFT Study. Ann. Neurol. 2007;62:S52.
    1. Hoglinger G.U., Melhem N.M., Dickson D.W., Sleiman P.M., Wang L.S., Klei L., Rademakers R., de Silva R., Litvan I., Riley D.E., et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 2011;43:699–705. .
    1. Naj A.C., Jun G., Beecham G.W., Wang L.S., Vardarajan B.N., Buros J., Gallins P.J., Buxbaum J.D., Jarvik G.P., Crane P.K., et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 2011;43:436–441. .
    1. Barghorn S., Biernat J., Mandelkow E. Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro. Methods Mol. Biol. 2005;299:35–51.
    1. Biernat J., Mandelkow E.M., Schroter C., Lichtenberg-Kraag B., Steiner B., Berling B., Meyer H., Mercken M., Vandermeeren A., Goedert M., et al. The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J. 1992;11:1593–1597.
    1. Goedert M., Spillantini M.G., Jakes R., Rutherford D., Crowther R.A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron. 1989;3:519–526. .
    1. Chirita C.N., Congdon E.E., Yin H., Kuret J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry. 2005;44:5862–5872. .

Source: PubMed

3
Subscribe