Enriched, Task-Specific Therapy in the Chronic Phase After Stroke: An Exploratory Study

Sara Vive, Jean-Luc Af Geijerstam, H Georg Kuhn, Lina Bunketorp-Käll, Sara Vive, Jean-Luc Af Geijerstam, H Georg Kuhn, Lina Bunketorp-Käll

Abstract

Background and purpose: There is a need to translate promising basic research about environmental enrichment to clinical stroke settings. The aim of this study was to assess the effectiveness of enriched, task-specific therapy in individuals with chronic stroke.

Methods: This is an exploratory study with a within-subject, repeated-measures design. The intervention was preceded by a baseline period to determine the stability of the outcome measures. Forty-one participants were enrolled at a mean of 36 months poststroke. The 3-week intervention combined physical therapy with social and cognitive stimulation inherent to environmental enrichment. The primary outcome was motor recovery measured by Modified Motor Assessment Scale (M-MAS). Secondary outcomes included balance, walking, distance walked in 6 minutes, grip strength, dexterity, and multiple dimensions of health. Assessments were made at baseline, immediately before and after the intervention, and at 3 and 6 months.

Results: The baseline measures were stable. The 39 participants (95%) who completed the intervention had increases of 2.3 points in the M-MAS UAS and 5 points on the Berg Balance Scale (both P < 0.001; SRM >0.90), an improvement of comfortable and fast gait speed of 0.13 and 0.23 m/s, respectively. (P < 0.001; SRM = 0.88), an increased distance walked over 6 minutes (24.2 m; P < 0.001; SRM = 0.64), and significant improvements in multiple dimensions of health. The improvements were sustained at 6 months.

Discussion and conclusions: Enriched, task-specific therapy may provide durable benefits across a wide spectrum of motor deficits and impairments after stroke. Although the results must be interpreted cautiously, the findings have implications for enriching strategies in stroke rehabilitation.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A304).

Trial registration: ClinicalTrials.gov NCT02889939.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1.
Figure 1.
(A). A typical enriched environment condition composed of increased space and equipped with various objects that stimulate motor function by providing exercise, balancing or climbing activities (running wheel, igloos, tunnels, tube mazes, and ladders), and cognition (a variety of toys and objects to interact with and navigate in). The location and types of objects are changed regularly to maintain the concept of novelty and complexity in the environment, thereby offering multisensory stimulation (visual, acoustic, smell, touch, push, and sensory-motor challenges). Multiple animals are introduced to the stimulating environment simultaneously to facilitate social interaction (allogrooming, sniffing, and play-soliciting activities). (B). A standard housing condition that generally entails a cage with bedding and access to water and food.
Figure 2.
Figure 2.
Flowchart of the study design. ETT indicates enriched, task-specific therapy; ITT, intention-to-treat.
Figure 3.
Figure 3.
The various enriching components acting in the clinical translation of the EE model in this study.
Figure 4.
Figure 4.
Line charts of the total mean scores on the Berg Balance Scale (BBS) and the Modified Motor Assessment Scale (MAS) according to Uppsala University Hospital at tests 1, 2, 3, and 5. BBS indicates Berg Balance Scale; ETT, enriched, task-specific therapy; M-MAS, Modified Motor Assessment Scale.

References

    1. Feigin VL, Forouzanfar MH, Krishnamurthi R, et al. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–254.
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–1702.
    1. Weerdesteyn V, de Niet M, van Duijnhoven HJ, Geurts AC. Falls in individuals with stroke. J Rehabil Res Dev. 2008;45(8):1195–1213.
    1. Pollock A, Baer G, Campbell P, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014;(4):CD001920.
    1. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–2104.
    1. Venna VR, Xu Y, Doran SJ, Patrizz A, McCullough LD. Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl Psychiatry. 2014;4:e351.
    1. Meyer S, Verheyden G, Brinkmann N, et al. Functional and motor outcome 5 years after stroke is equivalent to outcome at 2 months: follow-up of the collaborative evaluation of rehabilitation in stroke across Europe. Stroke. 2015;46(6):1613–1619.
    1. Corbett D, Jeffers M, Nguemeni C, Gomez-Smith M, Livingston-Thomas J. Lost in translation: rethinking approaches to stroke recovery. Prog Brain Res. 2015;218:413–434.
    1. Mala H, Rasmussen CP. The effect of combined therapies on recovery after acquired brain injury: systematic review of preclinical studies combining enriched environment, exercise, or task-specific training with other therapies. Restor Neurol Neurosci. 2017;35(1):25–64.
    1. Corbett D, Nguemeni C, Gomez-Smith M. How can you mend a broken brain? Neurorestorative approaches to stroke recovery. Cerebrovasc Dis. 2014;38(4):233–239.
    1. Livingston-Thomas J, Nelson P, Karthikeyan S, et al. Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics. 2016;13(2):395–402.
    1. Janssen H, Ada L, Bernhardt J, et al. An enriched environment increases activity in stroke patients undergoing rehabilitation in a mixed rehabilitation unit: a pilot non-randomized controlled trial. Disabil Rehabil. 2014;36(3):255–262.
    1. McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is environmental enrichment ready for clinical application in human post-stroke rehabilitation? Front Behav Neurosci. 2018;12:135.
    1. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699.
    1. Carr J, Shepherd R. Modified Motor Assessment Scale. Phys Ther. 1989;69(9):780.
    1. Barkelius K, Johansson A, Korm K, Lindmark B. Reliabilitet-och validitetsprövning av Motor assessment Scale enligt Uppsala Akademiska sjukhus-95. Nordisk fysioterapi. 1997;1:121.
    1. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27(1):27–36.
    1. Bohannon RW. Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing. 1997;26(1):15–19.
    1. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed). 1982;284(6329):1607–1608.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–391.
    1. Bohannon RW, Schaubert KL. Test-retest reliability of grip-strength measures obtained over a 12-week interval from community-dwelling elders. J Hand Ther. 2005;18(4):426–427, quiz 428.
    1. Hellstrom K, Lindmark B, Fugl-Meyer A. The Falls-Efficacy Scale, Swedish version: does it reflect clinically meaningful changes after stroke? Disabil Rehabil. 2002;24(9):471–481.
    1. Fugl-Meyer AR, Melin R, Fugl-Meyer KS. Life satisfaction in 18- to 64-year-old Swedes: in relation to gender, age, partner and immigrant status. J Rehabil Med. 2002;34(5):239–246.
    1. Flensner G, Ek AC, Soderhamn O. Reliability and validity of the Swedish version of the Fatigue Impact Scale (FIS). Scand J Occup Ther. 2005;12(4):170–180.
    1. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–389.
    1. Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. 2001;33(5):337–343.
    1. Loewen SC, Anderson BA. Reliability of the Modified Motor Assessment Scale and the Barthel Index. Phys Ther. 1988;68(7):1077–1081.
    1. Hiengkaew V, Jitaree K, Chaiyawat P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go” Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch Phys Med Rehabil. 2012;93(7):1201–1208.
    1. Lewek MD, Sykes R., III Minimal detectable change for gait speed depends on baseline speed in individuals with chronic stroke. J Neurol Phys Ther. 2019;43(2):122–127.
    1. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–749.
    1. Awad LN, Reisman DS, Wright TR, Roos MA, Binder-Macleod SA. Maximum walking speed is a key determinant of long distance walking function after stroke. Top Stroke Rehabil. 2014;21(6):502–509.
    1. States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst Rev. 2009;(3):CD006075.
    1. Duncan PW, Sullivan KJ, Behrman AL, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–2036.
    1. Langhammer B, Stanghelle JK, Lindmark B. Exercise and health-related quality of life during the first year following acute stroke. A randomized controlled trial. Brain Inj. 2008;22(2):135–145.
    1. Herrmann N, Black SE, Lawrence J, Szekely C, Szalai JP. The Sunnybrook Stroke Study: a prospective study of depressive symptoms and functional outcome. Stroke. 1998;29(3):618–624.
    1. French B, Thomas L, Leathley M, et al. Does repetitive task training improve functional activity after stroke? A Cochrane systematic review and meta-analysis. J Rehabil Med. 2010;42(1):9–14.
    1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.
    1. Bunketorp-Kall L, Lundgren-Nilsson A, Samuelsson H, et al. Long-term improvements after multimodal rehabilitation in late phase after stroke: a randomized controlled trial. Stroke. 2017;48(7):1916–1924.
    1. Ferrarello F, Baccini M, Rinaldi LA, et al. Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(2):136–143.
    1. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–872.

Source: PubMed

3
Subscribe