Factors associated with a high or low implantation of self-expanding devices in TAVR

Verena Veulemans, Oliver Maier, Kerstin Piayda, Kira Lisanne Berning, Stephan Binnebößel, Amin Polzin, Shazia Afzal, Lisa Dannenberg, Patrick Horn, Christian Jung, Ralf Westenfeld, Malte Kelm, Tobias Zeus, Verena Veulemans, Oliver Maier, Kerstin Piayda, Kira Lisanne Berning, Stephan Binnebößel, Amin Polzin, Shazia Afzal, Lisa Dannenberg, Patrick Horn, Christian Jung, Ralf Westenfeld, Malte Kelm, Tobias Zeus

Abstract

Objectives: Optimizing valve implantation depth (ID) plays a crucial role in minimizing conduction disturbances and achieving optimal functional integrity. Until now, the impact of intraprocedural fast (FP) or rapid ventricular pacing (RP) on the implantation depth has not been investigated. Therefore, we aimed to (1) evaluate the impact of different pacing maneuvers on ID, and (2) identify the independent predictors of deep ID.

Methods: 473 TAVR patients with newer-generation self-expanding devices were retrospectively enrolled and one-to-one propensity-score-matching was performed, resulting in a matching of 189 FP and RP patients in each cohort. The final ID was analyzed, and the underlying functional, anatomical, and procedural conditions were evaluated by univariate and multivariate analysis.

Results: The highest ID was reached under RP in severe aortic valve calcification and valve size 26 mm. Multivariate analysis identified left ventricular outflow (LVOT) calcification [OR 0.50 (0.31-0.81) p = 0.005*], a "flare" aortic root [OR 0.42 (0.25-0.71), p = 0.001*], and RP (OR 0.49 [0.30-0.79], p = 0.004*) as independent highly preventable predictors of a deep ID. In a model of protective factors, ID was significantly reduced with the number of protective criteria (0-2 criteria: - 5.7 mm ± 2.6 vs. 3-4 criteria - 4.3 mm ± 2.0; p < 0.0001*).

Conclusion: Data from this retrospective analysis indicate that RP is an independent predictor to reach a higher implantation depth using self-expanding devices. Randomized studies should prove for validation compared to fast and non-pacing maneuvers during valve delivery and their impact on implantation depth.

Trail registration: Clinical Trial registration: NCT01805739.

Study design: Evaluation of the impact of different pacing maneuvers (fast ventricular pacing-FP vs. rapid ventricular pacing-RP) on implantation depth (ID). After one-to-one-propensity-score-matching, independent protective and risk factors for a very deep ID beneath 6 mm toward the LVOT (< - 6 mm) were identified. Stent frame pictures as a courtesy by Medtronic®. AVC aortic valve calcification.

Keywords: Implantation depth; TAVI; TAVR.

Conflict of interest statement

VV, TZ, AP, CJ, and RW have received consulting fees, travel expenses, or study honoraria from Medtronic and Edwards Lifesciences. All other authors have nothing to disclose with regard to this project.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Independent predictors of very deep ID A Identified predictors of a very deep implantation depth (ID) toward the LVOT. B C-statistics of the independent predictors. C Converted protective model that includes all independent predictors, resulting in a significantly higher ID depending on the number of criteria (0–2 criteria: − 5.7 mm ± 2.6 vs. 3–4 criteria − 4.3 mm ± 2.0; p < 0.0001****). AUC area under the curve
Fig. 2
Fig. 2
Thirty-day outcome and functional status. A Final ID according to different AVC severity and the applied criteria of the protective model. B Functional improvement—shown as the mean gradient (dPmean)—in the FP and RP cohorts. C Frequency distribution of paravalvular leakage-related aortic regurgitation (AR) comparing the FP and RP cohorts.

References

    1. Falk V, Baumgartner H, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Rodriguez Muñoz D, et al. ESC/EACTS Guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg. 2017;52:616–664. doi: 10.5603/KP.2018.0013.
    1. Grube E, Van Mieghem NM, Bleiziffer S, Modine T, Bosmans J, Manoharan G, Linke A, Scholtz W, Tchétché D, Finkelstein A, et al. Clinical outcomes with a repositionable self-expanding transcatheter aortic valve prosthesis: the international FORWARD study. J Am Coll Cardiol. 2017;70:845–853. doi: 10.1016/j.jacc.2017.06.045.
    1. Hellhammer K, Piayda K, Afzal S, Kleinebrecht L, Makosch M, Henning I, Quast C, Jung C, Polzin A, Westenfeld R, et al. The latest evolution of the medtronic corevalve system in the era of transcatheter aortic valve replacement: matched comparison of the Evolut PRO and Evolut R. JACC Cardiovasc Interv. 2018;11:2314–2322. doi: 10.1016/j.jcin.2018.07.023.
    1. Manoharan G, Van Mieghem NM, Windecker S, Bosmans J, Bleiziffer S, Modine T, Linke A, Scholtz W, Chevalier B, Gooley R, et al. 1 year outcomes with the Evolut R self-expanding transcatheter aortic valve: from the international FORWARD study. JACC Cardiovasc Interv. 2018;11:2326–2334. doi: 10.1016/j.jcin.2018.07.032.
    1. Jilaihawi H, Zhao Z, Du R, Staniloae C, Saric M, Neuburger PJ, Querijero M, Vainrib A, Hisamoto K, Ibrahim H, et al. Minimizing permanent pacemaker following repositionable self-expanding transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12:1796–1807. doi: 10.1016/j.jcin.2019.05.056.
    1. Piayda K, Hellhammer K, Veulemans V, Sievert H, Gafoor S, Afzal S, Henning I, Makosch M, Polzin A, Jung C, et al. Navigating the “Optimal Implantation Depth” with a self-expanding TAVR device in daily clinical practice. JACC Cardiovasc Interv. 2020;13:679–688. doi: 10.1016/j.jcin.2019.07.048.
    1. Veulemans V, Frank D, Seoudy H, Wundram S, Piayda K, Maier O, Jung C, Polzin A, Frey N, Malte K, et al. New insights on potential permanent pacemaker predictors in TAVR using the largest self-expanding device. Cardiovasc Diagn Ther. 2020;10:1816–1826. doi: 10.21037/cdt-20-680.
    1. Axell RG, White PA, Giblett JP, Williams L, Rana BS, Klein A, O'Sullivan M, Davies WR, Densem CG, Hoole SP, et al. Rapid pacing-induced right ventricular dysfunction is evident after balloon-expandable transfemoral aortic valve replacement. J Am Coll Cardiol. 2017;69:903–904. doi: 10.1016/j.jacc.2016.12.011.
    1. Kapadia S, Agarwal S, Miller DC, Webb JG, Mack M, Ellis S, Herrmann HC, Pichard AD, Tuzcu EM, Svensson LG, et al. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (placement of aortic transcatheter valves) Circ Cardiovasc Interv. 2016;9:e002981. doi: 10.1161/CIRCINTERVENTIONS.115.002981.
    1. Fefer P, Bogdan A, Grossman Y, Berkovitch A, Brodov Y, Kuperstein R, Segev A, Guetta V, Barbash IM. Impact of rapid ventricular pacing on outcome after transcatheter aortic valve replacement. J Am Heart Assoc. 2018;7:e009038. doi: 10.1161/JAHA.118.009038.
    1. Kappetein AP, Head SJ, Généreux P, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research consortium-2 consensus document. J Am Coll Cardiol. 2012;60:1438–1454. doi: 10.1016/j.jacc.2012.09.001.
    1. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR) J Cardiovasc Comput Tomogr. 2012;6:366–380. doi: 10.1016/j.jcct.2012.11.002.
    1. Siontis GCM, Overtchouk P, Cahill TJ, Modine T, Prendergast B, Praz F, Pilgrim T, Petrinic T, Nikolakopoulou A, Salanti G, et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis. Eur Heart J. 2019;40:3143–3153. doi: 10.1093/eurheartj/ehz275.
    1. Latsios G, Gerckens U, Buellesfeld L, Mueller R, John D, Yuecel S, Syring J, Sauren B, Grube E. “Device landing zone” calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI. Catheter Cardiovasc Interv. 2010;76:431–439. doi: 10.1002/ccd.22563.
    1. Maeno Y, Abramowitz Y, Kawamori H, Kazuno Y, Kubo S, Takahashi N, Mangat G, Okuyama K, Kashif M, Chakravarty T, et al. A highly predictive risk model for pacemaker implantation after TAVR. JACC Cardiovasc Imaging. 2017;10:1139–1147. doi: 10.1016/j.jcmg.2016.11.020.
    1. Siontis GCM, Praz F, Lanz J, Vollenbroich R, Roten L, Stortecky S, Räber L, Windecker S, Pilgrim T. New-onset arrhythmias following transcatheter aortic valve implantation: a systematic review and meta-analysis. Heart. 2018;104:1208–1215. doi: 10.1136/heartjnl-2017-312310.
    1. Hamdan A, Guetta V, Klempfner R, Konen E, Raanani E, Glikson M, Goitein O, Segev A, Barbash I, Fefer P, et al. Inverse relationship between membranous septal length and the risk of atrioventricular 1 block in patients undergoing transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2015;8:1218–1228. doi: 10.1016/j.jcin.2015.05.010.

Source: PubMed

3
Subscribe