Effects of Fresh Watermelon Consumption on the Acute Satiety Response and Cardiometabolic Risk Factors in Overweight and Obese Adults

Tiffany Lum, Megan Connolly, Amanda Marx, Joshua Beidler, Shirin Hooshmand, Mark Kern, Changqi Liu, Mee Young Hong, Tiffany Lum, Megan Connolly, Amanda Marx, Joshua Beidler, Shirin Hooshmand, Mark Kern, Changqi Liu, Mee Young Hong

Abstract

Although some studies have demonstrated the beneficial effects of watermelon supplementation on metabolic diseases, no study has explored the potential mechanism by which watermelon consumption improves body weight management. The objective of this study was to evaluate the effects of fresh watermelon consumption on satiety, postprandial glucose and insulin response, and adiposity and body weight change after 4 weeks of intervention in overweight and obese adults. In a crossover design, 33 overweight or obese subjects consumed watermelon (2 cups) or isocaloric low-fat cookies daily for 4 weeks. Relative to cookies, watermelon elicited more (p < 0.05) robust satiety responses (lower hunger, prospective food consumption and desire to eat and greater fullness). Watermelon consumption significantly decreased body weight, body mass index (BMI), systolic blood pressure and waist-to-hip ratio (p ≤ 0.05). Cookie consumption significantly increased blood pressure and body fat (p < 0.05). Oxidative stress was lower at four week of watermelon intervention compared to cookie intervention (p = 0.034). Total antioxidant capacity increased with watermelon consumption (p = 0.003) in blood. This study shows that reductions in body weight, body mass index (BMI), and blood pressure can be achieved through daily consumption of watermelon, which also improves some factors associated with overweight and obesity (clinicaltrials.gov, NCT03380221).

Keywords: antioxidant; human; oxidative stress; satiety; watermelon.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effects of watermelon (WM) and low-fat cookies (LFC) on (a) hunger, (b) fullness, (c) desire to eat, (d) prospective food consumption, and (e) thirst. *: different between WM and LFC; +: different from baseline. VAS: visual analogue scale.
Figure 2
Figure 2
(a) Effects of WM and LFC on postprandial glucose. No significant differences in blood glucose were observed between snacks and between pre-consumption (pre) and 1-h postconsumption (post). (b) Effects of WM and LFC on postprandial insulin. Blood insulin significantly increased (p < 0.05) in both snacks 1-h postconsumption compared with baseline. Data are presented as means ± SD. Within a variable, values not sharing common superscript are significantly different at p < 0.05.
Figure 3
Figure 3
Effects of WM and LFC on serum concentrations of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) at baseline and week 4 of each intervention. Data are presented as means ± SD. Within a variable, values not sharing a common superscript are significantly different at p < 0.05.
Figure 4
Figure 4
Effects of WM and LFC on serum values for (a) thiobarbituric acid reactive substances (TBARS) and (b) total antioxidant capacity (TAC) at baseline and week 4 of each intervention. Data are presented as means ± SD. Within a variable, values not sharing a common superscript are significantly different at p < 0.05.

References

    1. Hales C., Carroll M.D., Fryar C.D., Ogden C.L. Prevalence of Obesity among Adults and Youth: United States, 2015–2016. [(accessed on 26 November 2018)]; Available online: .
    1. Must A., McKeown N.M. The Disease Burden Associated with Overweight and Obesity. In: De Groot L.J., Chrousos G., Dungan K., Feingold K.R., Grossman A., Hershman J.M., Koch C., Korbonits M., McLachlan R., et al., editors. Endotext. , Inc.; South Dartmouth, MA, USA: 2000.
    1. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005;82:222S–225S. doi: 10.1093/ajcn/82.1.222S.
    1. Padwal R.S., Majumdar S.R. Drug treatments for obesity: Orlistat, sibutramine, and rimonabant. Lancet. 2007;369:71–77. doi: 10.1016/S0140-6736(07)60033-6.
    1. Piernas C., Popkin B.M. Snacking increased among U.S. adults between 1977 and 2006. J. Nutr. 2010;140:325–332. doi: 10.3945/jn.109.112763.
    1. Boeing H., Bechthold A., Bub A., Ellinger S., Haller D., Kroke A., Leschik-Bonnet E., Müller M.J., Oberritter H., Schulze M., et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012;51:637–663. doi: 10.1007/s00394-012-0380-y.
    1. Rolls B.J. The relationship between dietary energy density and energy intake. Physiol. Behav. 2009;97:609–615. doi: 10.1016/j.physbeh.2009.03.011.
    1. Furchner-Evanson A., Petrisko Y., Howarth L., Nemoseck T., Kern M. Type of snack influences satiety responses in adult women. Appetite. 2010;54:564–569. doi: 10.1016/j.appet.2010.02.015.
    1. Patel B.P., Bellissimo N., Luhovyy B., Bennett L.J., Hurton E., Painter J.E., Anderson G.H. An after-school snack of raisins lowers cumulative food intake in young children. J. Food Sci. 2013;78(Suppl. 1):A5–A10. doi: 10.1111/1750-3841.12070.
    1. Farajian P., Katsagani M., Zampelas A. Short-term effects of a snack including dried prunes on energy intake and satiety in normal-weight individuals. Eat. Behav. 2010;11:201–203. doi: 10.1016/j.eatbeh.2010.02.004.
    1. Bays H., Weiter K., Anderson J. A randomized study of raisins versus alternative snacks on glycemic control and other cardiovascular risk factors in patients with type 2 diabetes mellitus. Phys. Sportsmed. 2015;43:37–43. doi: 10.1080/00913847.2015.998410.
    1. Nutrient Database Laboratory (U.S.) and Consumer and Food Economics Institute (U.S.) USDA Nutrient Database for Standard Reference. [(accessed on 26 November 2018)]; Available online:
    1. Barnes T.L., French S.A., Harnack L.J., Mitchell N.R., Wolfson J. Snacking behaviors, diet quality, and body mass index in a community sample of working adults. J. Acad. Nutr. Diet. 2015;115:1117–1123. doi: 10.1016/j.jand.2015.01.009.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture [(accessed on 26 November 2018)];2015–2020 Dietary Guidelines for Americans. (8th ed.). 2015 Available online: .
    1. Perkins-Veazie P., Davis A., Collins J.K. Watermelon: From dessert to functional food. Isr. J. Plant Sci. 2012;60:395–402.
    1. Story E.N., Kopec R.E., Schwartz S.J., Harris G.K. An Update on the Health Effects of Tomato Lycopene. Annu. Rev. Food Sci. Technol. 2010;1:189–210. doi: 10.1146/annurev.food.102308.124120.
    1. Figueroa A., Wong A., Jaime S.J., Gonzales J.U. Influence of l-citrulline and watermelon supplementation on vascular function and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:92–98. doi: 10.1097/MCO.0000000000000340.
    1. Poduri A., Rateri D.L., Saha S.K., Saha S., Daugherty A. Citrullus lanatus “sentinel” (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice. J. Nutr. Biochem. 2013;24:882–886. doi: 10.1016/j.jnutbio.2012.05.011.
    1. Hong M.Y., Hartig N., Kaufman K., Hooshmand S., Figueroa A., Kern M. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr. Res. 2015;35:251–258. doi: 10.1016/j.nutres.2014.12.005.
    1. Hong M.Y., Beidler J., Hooshmand S., Figueroa A., Kern M. Watermelon and l-arginine consumption improve serum lipid profile and reduce inflammation and oxidative stress by altering gene expression in rats fed an atherogenic diet. Nutr. Res. 2018;58:46–54. doi: 10.1016/j.nutres.2018.06.008.
    1. Massa N.M., Silva A.S., de Oliveira C.V., Costa M.J., Persuhn D.C., Barbosa C.V., Gonçalves M.D. Supplementation with Watermelon Extract Reduces Total Cholesterol and LDL Cholesterol in Adults with Dyslipidemia under the Influence of the MTHFR C677T Polymorphism. J. Am. Coll. Nutr. 2016;35:514–520. doi: 10.1080/07315724.2015.1065522.
    1. Figueroa A., Sanchez-Gonzalez M.A., Wong A., Arjmandi B.H. Watermelon extract supplementation reduces ankle blood pressure and carotid augmentation index in obese adults with prehypertension or hypertension. Am. J. Hypertens. 2012;25:640–643. doi: 10.1038/ajh.2012.20.
    1. Flint A., Raben A., Blundell J.E., Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000;24:38–48. doi: 10.1038/sj.ijo.0801083.
    1. Sallis J.F., Haskell W.L., Wood P.D., Fortmann S.P., Rogers T., Blair S.N., Paffenbarger R.S., Jr. Physical activity assessment methodology in the Five-City Project. Am. J. Epidemiol. 1985;121:91–106. doi: 10.1093/oxfordjournals.aje.a113987.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502.
    1. Kaliora A.C., Kokkinos A., Diolintzi A., Stoupaki M., Gioxari A., Kanellos P.T., Dedoussis G.V.Z., Vlachogiannakos J., Revenas C., Ladas S.D., et al. The effect of minimal dietary changes with raisins in NAFLD patients with non-significant fibrosis: A randomized controlled intervention. Food Funct. 2016;7:4533–4544. doi: 10.1039/C6FO01040G.
    1. Kanellos P.T., Kaliora A.C., Tentolouris N.K., Argiana V., Perrea D., Kalogeropoulos N., Kountouri A.M., Karathanos V.T. A pilot, randomized controlled trial to examine the health outcomes of raisin consumption in patients with diabetes. Nutrition. 2014;30:358–364. doi: 10.1016/j.nut.2013.07.020.
    1. Wu G., Collins J.K., Perkins-Veazie P., Siddiq M., Dolan K.D., Kelly K.A., Heaps C.L., Meininger C.J. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J. Nutr. 2007;137:2680–2685. doi: 10.1093/jn/137.12.2680.
    1. Figueroa A., Sanchez-Gonzalez M.A., Perkins-Veazie P.M., Arjmandi B.H. Effects of watermelon supplementation on aortic blood pressure and wave reflection in individuals with prehypertension: A pilot study. Am. J. Hypertens. 2011;24:40–44. doi: 10.1038/ajh.2010.142.
    1. Figueroa A., Wong A., Hooshmand S., Sanchez-Gonzalez M.A. Effects of watermelon supplementation on arterial stiffness and wave reflection amplitude in postmenopausal women. Menopause. 2013;20:573–577. doi: 10.1097/gme.0b013e3182733794.
    1. Figueroa A., Wong A., Kalfon R. Effects of Watermelon Supplementation on Aortic Hemodynamic Responses to the Cold Pressor Test in Obese Hypertensive Adults. Am. J. Hypertens. 2013;27:899–906. doi: 10.1093/ajh/hpt295.
    1. Shanely R.A., Nieman D.C., Perkins-Veazie P., Henson D.A., Meaney M.P., Knab A.M., Cialdell-Kam L. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity. Nutrients. 2016;8:518. doi: 10.3390/nu8080518.
    1. Flood-Obbagy J.E., Rolls B.J. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009;52:416–422. doi: 10.1016/j.appet.2008.12.001.
    1. Burton-Freeman B. Dietary fiber and energy regulation. J. Nutr. 2000;130:272S–275S. doi: 10.1093/jn/130.2.272S.
    1. Howarth L., Petrisko Y., Furchner-Evanson A., Nemoseck T., Kern M. Snack selection influences nutrient intake, triglycerides, and bowel habits of adult women: A pilot study. J. Am. Diet. Assoc. 2010;110:1322–1327. doi: 10.1016/j.jada.2010.06.002.
    1. Żurakowski A., Zahorska-Markiewicz B., Olszanecka-Glinianowicz M., Kocelak P. Effect of Meal Volume on Hunger and Satiety in Obese Subjects: Volume of meal and satiety. EJIFCC. 2006;17:167–176.
    1. Rolls B.J., Bell E.A., Waugh B.A. Increasing the volume of a food by incorporating air affects satiety in men. Am. J. Clin. Nutr. 2000;72:361–368. doi: 10.1093/ajcn/72.2.361.
    1. Sørensen L.B., Møller P., Flint A., Martens M., Raben A. Effect of sensory perception of foods on appetite and food intake: A review of studies on humans. Int. J. Obes. 2003;27:1152–1166. doi: 10.1038/sj.ijo.0802391.
    1. Esfahani A., Lam J., Kendall C.W.C. Acute effects of raisin consumption on glucose and insulin reponses in healthy individuals. J. Nutr. Sci. 2014;3:e1. doi: 10.1017/jns.2013.33.
    1. Sansone K., Kern M., Hong M.Y., Liu C., Hooshmand S. Acute Effects of Dried Apple Consumption on Metabolic and Cognitive Responses in Healthy Individuals. J. Med. Food. 2018;21:1158–1164. doi: 10.1089/jmf.2017.0152.
    1. Byrne H.K., Kim Y., Hertzler S.R., Watt C.A., Mattern C.O. Glycemic and insulinemic responses to different preexercise snacks in participants with impaired fasting glucose. Int. J. Sport Nutr. Exerc. Metab. 2011;21:1–10. doi: 10.1123/ijsnem.21.1.1.
    1. Nilsson A.C., Ostman E.M., Holst J.J., Björck I.M.E. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J. Nutr. 2008;138:732–739. doi: 10.1093/jn/138.4.732.
    1. Moore M.C., Cherrington A.D., Mann S.L., Davis S.N. Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J. Clin. Endocrinol. Metab. 2000;85:4515–4519. doi: 10.1210/jc.85.12.4515.
    1. Moore M.C., Davis S.N., Mann S.L., Cherrington A.D. Acute fructose administration improves oral glucose tolerance in adults with type 2 diabetes. Diabetes Care. 2001;24:1882–1887. doi: 10.2337/diacare.24.11.1882.
    1. Sievenpiper J.L., Chiavaroli L., de Souza R.J., Mirrahimi A., Cozma A.I., Ha V., Wang D.D., Yu M.E., Carleton A.J., Beyene J., et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: A small meta-analysis of randomised controlled feeding trials. Br. J. Nutr. 2012;108:418–423. doi: 10.1017/S000711451200013X.
    1. Jazet I.M., Pijl H., Meinders A.E. Adipose tissue as an endocrine organ: Impact on insulin resistance. Neth. J. Med. 2003;61:194–212.
    1. English P.J., Coughlin S.R., Hayden K., Malik I.A., Wilding J.P.H. Plasma adiponectin increases postprandially in obese, but not in lean, subjects. Obes. Res. 2003;11:839–844. doi: 10.1038/oby.2003.115.
    1. Massa N.M.L., Silva A.S., Toscano L.T., Silva J.D.R., Persuhn D.C., Gonçalves M.D.C.R. Watermelon extract reduces blood pressure but does not change sympathovagal balance in prehypertensive and hypertensive subjects. Blood. 2016;25:244–248.
    1. Kuhn K., Harris P., Cunningham G., Robbins I., Summar M., Christman B. Oral citrulline effectively elevates plasma arginine levels for 24 h in normal volunteers. Circ. AHA Sci. Sess. 2006;II:1339.
    1. Kim C.-H., Park M.-K., Kim S.-K., Cho Y.-H. Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. Int. J. Food Sci. Technol. 2014;49:2083–2091. doi: 10.1111/ijfs.12517.
    1. Edwards A.J., Vinyard B.T., Wiley E.R., Brown E.D., Collins J.K., Perkins-Veazie P., Baker R.A., Clevidence B.A. Consumption of watermelon juice increases plasma concentrations of lycopene and beta-carotene in humans. J. Nutr. 2003;133:1043–1050. doi: 10.1093/jn/133.4.1043.
    1. Wink D.A., Miranda K.M., Espey M.G., Pluta R.M., Hewett S.J., Colton C., Vitek M., Feelisch M., Grisham M.B. Mechanisms of the Antioxidant Effects of Nitric Oxide. Antioxid. Redox Signal. 2001;3:203–213. doi: 10.1089/152308601300185179.

Source: PubMed

3
Subscribe