Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics

Charlotte A Hall, Robert P Chilcott, Charlotte A Hall, Robert P Chilcott

Abstract

The pupillary light reflex (PLR) describes the constriction and subsequent dilation of the pupil in response to light as a result of the antagonistic actions of the iris sphincter and dilator muscles. Since these muscles are innervated by the parasympathetic and sympathetic nervous systems, respectively, different parameters of the PLR can be used as indicators for either sympathetic or parasympathetic modulation. Thus, the PLR provides an important metric of autonomic nervous system function that has been exploited for a wide range of clinical applications. Measurement of the PLR using dynamic pupillometry is now an established quantitative, non-invasive tool in assessment of traumatic head injuries. This review examines the more recent application of dynamic pupillometry as a diagnostic tool for a wide range of clinical conditions, varying from neurodegenerative disease to exposure to toxic chemicals, as well as its potential in the non-invasive diagnosis of infectious disease.

Keywords: acetylcholine; autism; chemicals; cholinergic system; infection; neurodegeneration; pupillometry; recreational drugs; toxins; trauma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic of the pupillogram (blue line) and associated PLR parameters. The light stimulus at time zero results in a rapid reduction in pupil diameter. Latency (tL) is calculated as the elapsed time between light onset and the start of constriction. The pupil then rapidly constricts (maximal constriction velocity; MCV) from the baseline (D0) pupil diameter to the minimum (Dmin) pupil diameter; the constriction time (tC) and maximum constriction amplitude (MCA) are calculated as the time interval and size difference between these two values, respectively. At offset of light stimulus or during sustained light stimulation the pupil undergoes a period of rapid redilation or pupillary “escape” to a partially constricted state. Subsequently the pupil slowly returns to the baseline diameter.
Figure 2
Figure 2
Simplified schematic view of retinal layers involved in the pupillary light reflex. Vertical signalling pathways in the retina are composed of the photoreceptors (rod and cone cells), bipolar cells and retinal ganglion cells (RGC), including intrinsically photosensitive retinal ganglion cells (ipRGCs). There are also two lateral pathways comprised of horizontal cells in the outer plexiform layer (OPL) and the amacrine cells in the inner plexiform layer (IPL). These cells modulate the activity of other retinal cells in the vertical pathway. The somata of the neurons are in three cellular layers. The rod and cone cells are located in the outer nuclear layer (ONL), which is adjacent to the retinal pigment epithelium (RPE). The horizontal cell, bipolar cell and amacrine cell somas are located in the inner nuclear layer (INL), whilst the ganglion cell somata are located in the ganglion cell layer (GCL). The axon terminals of the bipolar cells stratify at different depths of the inner plexiform layer, which is subdivided into the OFF outer sublamina (where OFF bipolar cells terminate) and the ON inner sublamina (where ON bipolar cells terminate). There are also ON and OFF bands of melanopsin dendrites from the ipRGCs, but both lie outside of the ON and OFF cholinergic bands within the IPL. The bipolar cells are photoreceptor specific and the bipolar dendrites synapse exclusively with either rod or cone cells.
Figure 3
Figure 3
The parasympathetic nervous system is the main system responsible for pupil constriction in response to light. The integrated afferent input is transmitted along the axons of the retinal ganglion cells (RGC), which contribute to the optic nerve. At the optic chiasm, nerves from the nasal retina cross to the contralateral side, whilst nerves from the temporal retina continue ipsilaterally. The pupillary RGC axons exit the optic tract and synapse at the pretectal olivary nucleus. Pretectal neurons are projected either ipsilaterally or contralaterally, across the posterior commissure, to the Edinger-Westphal nucleus. From there, the pre-ganglionic parasympathetic fibres travel with the oculomotor, or III cranial nerve, and synapse at the ciliary ganglion. The post-ganglionic parasympathetic neurons (short ciliary nerves) travel to and innervate the contraction of the iris sphincter muscle via the release of acetylcholine at the neuromuscular junction, resulting in pupil constriction.
Figure 4
Figure 4
Both parasympathetic and sympathetic nervous systems are required for pupil dilation as part of the PLR. The parasympathetic innervation of the pupil sphincter is inhibited by central supranuclear inhibition of Edinger–Westphal nuclei via α2-adrenergic receptor activation, resulting in relaxation of the pupil sphincter muscle. The sympathetic influence on the iris dilator muscle consists of a paired three-neuron arc on both the right and left sides of the central and peripheral nervous system without decussations. The first-order (central) neuron originates in the hypothalamus and descends to synapse with the pre-ganglionic in the ciliospinal centre of Budge at C8-T1 of the spinal cord. The pre-ganglionic neuron ascends from the ciliospinal centre of Budge to synapse with the post-ganglionic neuron at the superior cervical ganglion, which is located at the periarterial plexus near the carotid artery bifurcation. Finally, long ciliary (post-ganglionic) nerves travel to and innervate the contraction of the iris dilator muscles, via a release of noradrenaline (NA) at the neuromuscular junction, resulting in pupil dilation. The synaptic transmission at the other junctions is mediated by acetylcholine.

References

    1. Hirata Y., Yamaji K., Sakai H., Usui S. Function of the pupil in vision and information capacity of retinal image. Syst. Comput. Jpn. 2003;34:48–57. doi: 10.1002/scj.10344.
    1. McDougal D.H., Gamlin P.D. Autonomic control of the eye. Compr. Physiol. 2015;5:439–473. doi: 10.1002/cphy.c140014.
    1. Girkin C. Evaluation of the pupillary light response as an objective measure of visual function. Ophthalmol. Clin. N. Am. 2003;16:143–153. doi: 10.1016/S0896-1549(03)00002-6.
    1. Loewenfeld I.E. The Pupil: Anatomy, Physiology, and Clinical Applications. 2nd ed. Butterworth-Heinemann; Boston, MA, USA: 1999.
    1. Winn B., Whitaker D., Elliott D.B., Phillips N.J. Factors affecting light-adapted pupil size in normal human subjects. Investig. Ophthalmol. Vis. Sci. 1994;35:1132–1137.
    1. Adhikari P., Pearson C.A., Anderson A.M., Zele A.J., Feigl B. Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR) Sci. Rep. 2015;5:17610. doi: 10.1038/srep17610.
    1. Ellis C.J. The pupillary light reflex in normal subjects. Br. J. Ophthalmol. 1981;65:754–759. doi: 10.1136/bjo.65.11.754.
    1. Lowenstein O., Loewenfeld I.E. The sleep-waking cycle and pupillary activity. Ann. N. Y. Acad. Sci. 1964;117:142–156. doi: 10.1111/j.1749-6632.1964.tb48169.x.
    1. Bergamin O., Kardon R.H. Latency of the pupil light reflex: Sample rate, stimulus intensity, and variation in normal subjects. Investig. Ophthalmol. Vis. Sci. 2003;44:1546–1554. doi: 10.1167/iovs.02-0468.
    1. Barbur J. The Visual Neurosciences. MIT; Cambridge, MA, USA: 2004. Learning from the pupil: Studies of basic mechanisms and clinical applications; pp. 641–656.
    1. Kawasaki A., Kardon R.H. Intrinsically photosensitive retinal ganglion cells. J. Neuroophthalmol. 2007;27:195–204. doi: 10.1097/WNO.0b013e31814b1df9.
    1. Joyce D.S., Feigl B., Zele A.J. Melanopsin-mediated post-illumination pupil response in the peripheral retina. J. Vis. 2016;16:5. doi: 10.1167/16.8.5.
    1. Kankipati L., Girkin C.A., Gamlin P.D. Post-illumination pupil response in subjects without ocular disease. Investig. Ophthalmol. Vis. Sci. 2010;51:2764–2769. doi: 10.1167/iovs.09-4717.
    1. Adhikari P., Feigl B., Zele A.J. Rhodopsin and melanopsin contributions to the early redilation phase of the post-illumination pupil response (PIPR) PLoS ONE. 2016;11:e0161175. doi: 10.1371/journal.pone.0161175.
    1. Gamlin P.D., McDougal D.H., Pokorny J., Smith V.C., Yau K.W., Dacey D.M. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 2007;47:946–954. doi: 10.1016/j.visres.2006.12.015.
    1. Rosen E.S., Gore C.L., Taylor D., Chitkara D., Howes F., Kowalewski E. Use of a digital infrared pupillometer to assess patient suitability for refractive surgery. J. Cataract Refract. Surg. 2002;28:1433–1438. doi: 10.1016/S0886-3350(01)01350-5.
    1. Smith G.T. Repeatability of the procyon p3000 pupillometer. J. Refract. Surg. 2011;27:11. doi: 10.3928/1081597X-20101202-01.
    1. Chen J.W., Vakil-Gilani K., Williamson K.L., Cecil S. Infrared pupillometry, the Neurological Pupil index and unilateral pupillary dilation after traumatic brain injury: Implications for treatment paradigms. Springerplus. 2014;3:548. doi: 10.1186/2193-1801-3-548.
    1. De Souza J.K., Pinto M.A., Vieira P.G., Baron J., Tierra-Criollo C.J. An open-source, FireWire camera-based, Labview-controlled image acquisition system for automated, dynamic pupillometry and blink detection. Comput. Methods Programs Biomed. 2013;112:607–623. doi: 10.1016/j.cmpb.2013.07.011.
    1. Bremner F.D. Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Investig. Ophthalmol. Vis. Sci. 2012;53:7343–7347. doi: 10.1167/iovs.12-10881.
    1. Nyström P., Falck-Ytter T., Gredebäck G. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences. Behav. Res. Methods. 2016;48:542–552. doi: 10.3758/s13428-015-0616-x.
    1. Keivanidou A., Fotiou D., Arnaoutoglou C., Arnaoutoglou M., Fotiou F., Karlovasitou A. Evaluation of autonomic imbalance in patients with heart failure: A preliminary study of pupillomotor function. Cardiol. J. 2010;17:65–72.
    1. Wang Y., Zekveld A.A., Naylor G., Ohlenforst B., Jansma E.P., Lorens A., Lunner T., Kramer S.E. Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS ONE. 2016;11:e0153566. doi: 10.1371/journal.pone.0153566.
    1. Cepko C.L. The Determination of Rod and Cone Photoreceptor Fate. Annu. Rev. Vis. Sci. 2015;1:211–234. doi: 10.1146/annurev-vision-090814-121657.
    1. Lamb T.D. Why rods and cones? Eye. 2016;30:179–185. doi: 10.1038/eye.2015.236.
    1. Kawamura S., Tachibanaki S. Explaining the functional differences of rods versus cones. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012;1:675–683. doi: 10.1002/wmts.8.
    1. Diamond J.S. Inhibitory Interneurons in the Retina: Types, Circuitry, and Function. Annu. Rev. Vis. Sci. 2017;3:1–24. doi: 10.1146/annurev-vision-102016-061345.
    1. Dacey D.M., Liao H.W., Peterson B.B., Robinson F.R., Smith V.C., Pokorny J., Yau K.W., Gamlin P.D. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–754. doi: 10.1038/nature03387.
    1. Liao H.-W., Ren X., Peterson B.B., Marshak D.W., Yau K.-W., Gamlin P.D., Dacey D.M. Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J. Comp. Neurol. 2016;524:2845–2872. doi: 10.1002/cne.23995.
    1. Nasir-Ahmad S., Lee S.C.S., Martin P.R., Grünert U. Melanopsin-expressing ganglion cells in human retina: Morphology, distribution, and synaptic connections. J. Comp. Neurol. 2017;10 doi: 10.1002/cne.24176.
    1. Berson D.M., Dunn F.A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–1073. doi: 10.1126/science.1067262.
    1. Barnard A.R., Hattar S., Hankins M.W., Lucas R.J. Melanopsin regulates visual processing in the mouse retina. Curr. Biol. 2006;16:389–395. doi: 10.1016/j.cub.2005.12.045.
    1. Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–1070. doi: 10.1126/science.1069609.
    1. Graham D.M., Wong K.Y., Shapiro P., Frederick C., Pattabiraman K., Berson D.M. Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J. Neurophysiol. 2008;99:2522–2532. doi: 10.1152/jn.01066.2007.
    1. Hartwick A.T., Bramley J.R., Yu J., Stevens K.T., Allen C.N., Baldridge W.H., Sollars P.J., Pickard G.E. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J. Neurosci. 2007;27:13468–13480. doi: 10.1523/JNEUROSCI.3626-07.2007.
    1. Sekaran S., Lall G.S., Ralphs K.L., Wolstenholme A.J., Lucas R.J., Foster R.G., Hankins M.W. 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J. Neurosci. 2007;27:3981–3986. doi: 10.1523/JNEUROSCI.4716-06.2007.
    1. Warren E.J., Allen C.N., Brown R.L., Robinson D.W. The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur. J. Neurosci. 2006;23:2477–2487. doi: 10.1111/j.1460-9568.2006.04777.x.
    1. Markwell E.L., Feigl B., Zele A.J. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin. Exp. Optom. 2010;93:137–149. doi: 10.1111/j.1444-0938.2010.00479.x.
    1. Adhikari P., Zele A.J., Feigl B. The post-illumination pupil response (PIPR) Investig. Ophthalmol. Vis. Sci. 2015;56:3838–3849. doi: 10.1167/iovs.14-16233.
    1. Fu Y., Yau K.W. Phototransduction in mouse rods and cones. Pflugers Arch. Eur. J. Physiol. 2007;454:805–819. doi: 10.1007/s00424-006-0194-y.
    1. Hoyt W.F., Luis O. The primate chiasm. Details of visual fiber organization studied by silver impregnation techniques. Arch. Ophthalmol. 1963;70:69–85. doi: 10.1001/archopht.1963.00960050071013.
    1. Kozicz T., Bittencourt J.C., May P.J., Reiner A., Gamlin P.D., Palkovits M., Horn A.K., Toledo C.A., Ryabinin A.E. The Edinger-Westphal nucleus: A historical, structural, and functional perspective on a dichotomous terminology. J. Comp. Neurol. 2011;519:1413–1434. doi: 10.1002/cne.22580.
    1. Remington L.A. Clinical Anatomy of the Visual System. Elsevier Health Sciences; Amsterdam, The Netherlands: 2011. 303p
    1. Kardon R., Anderson S.C., Damarjian T.G., Grace E.M., Stone E., Kawasaki A. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology. 2011;118:376–381. doi: 10.1016/j.ophtha.2010.06.033.
    1. Johnson L.N., Hill R.A., Bartholomew M.J. Correlation of afferent pupillary defect with visual field loss on automated perimetry. Ophthalmology. 1988;95:1649–1655. doi: 10.1016/S0161-6420(88)32962-3.
    1. Saari M., Koskela P., Masar S.E. Effect of vehicle on pilocarpine-induced miosis. Acta Ophthalmol. 1978;56:496–503. doi: 10.1111/j.1755-3768.1978.tb01362.x.
    1. Liu J.H., Dacus A.C. Central cholinergic stimulation affects ocular functions through sympathetic pathways. Investig. Ophthalmol. Vis. Sci. 1990;31:1332–1338.
    1. Hansen M.S., Sander B., Kawasaki A., Brøndsted A.E., Nissen C. Prior light exposure enhances the pupil response to subsequent short wavelength (blue) light. J. Clin. Exp. Ophthalmol. 2011;2:1000152. doi: 10.4172/2155-9570.1000152.
    1. Rubin L.S. Pupillometric studies of alcoholism. Int. J. Neurosci. 1980;11:301–308. doi: 10.3109/00207458009147594.
    1. Rubin L.S., Gottheil E., Roberts A., Alterman A., Holstine J. Effects of alcohol on autonomic reactivity in alcoholics. Pupillometric studies. III. J. Stud. Alcohol. 1980;41:611–622. doi: 10.15288/jsa.1980.41.611.
    1. Roecklein K., Wong P., Ernecoff N., Miller M., Donofry S., Kamarck M., Wood-Vasey W.M., Franzen P. The post illumination pupil response is reduced in seasonal affective disorder. Psychiatry Res. 2013;210:150–158. doi: 10.1016/j.psychres.2013.05.023.
    1. Bär K.J., Boettger M.K., Schulz S., Harzendorf C., Agelink M.W., Yeragani V.K., Chokka P., Voss A. The interaction between pupil function and cardiovascular regulation in patients with acute schizophrenia. Clin. Neurophysiol. 2008;119:2209–2213. doi: 10.1016/j.clinph.2008.06.012.
    1. Bakes A., Bradshaw C.M., Szabadi E. Attenuation of the pupillary light reflex in anxious patients. Br. J. Clin. Pharmacol. 1990;30:377–381. doi: 10.1111/j.1365-2125.1990.tb03787.x.
    1. Bittner D.M., Wieseler I., Wilhelm H., Riepe M.W., Müller N.G. Repetitive pupil light reflex: Potential marker in Alzheimer’s disease? J. Alzheimer Dis. 2014;42:1469–1477.
    1. Fotiou F., Fountoulakis K.N., Tsolaki M., Goulas A., Palikaras A. Changes in pupil reaction to light in Alzheimer’s disease patients: A preliminary report. Int. J. Psychophysiol. 2000;37:111–120. doi: 10.1016/S0167-8760(00)00099-4.
    1. Tales A., Troscianko T., Lush D., Haworth J., Wilcock G.K., Butler S.R. The pupillary light reflex in aging and Alzheimer’s disease. Aging. 2001;13:473–478.
    1. Fotiou D.F., Stergiou V., Tsiptsios D., Lithari C., Nakou M., Karlovasitou A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: Evaluation with pupillometry. Int. J. Psychophysiol. 2009;73:143–149. doi: 10.1016/j.ijpsycho.2009.01.011.
    1. Giza E., Fotiou D., Bostantjopoulou S., Katsarou Z., Karlovasitou A. Pupil light reflex in Parkinson’s disease: Evaluation with pupillometry. Int. J. Neurosci. 2011;121:37–43. doi: 10.3109/00207454.2010.526730.
    1. Micieli G., Tassorelli C., Martignoni E., Pacchetti C., Bruggi P., Magri M., Nappi G. Disordered pupil reactivity in Parkinson’s disease. Clin. Auton. Res. 1991;1:55–58. doi: 10.1007/BF01826058.
    1. Stergiou V., Fotiou D., Tsiptsios D., Haidich B., Nakou M., Giantselidis C., Karlovasitou A. Pupillometric findings in patients with Parkinson’s disease and cognitive disorder. Int. J. Psychophysiol. 2009;72:97–101. doi: 10.1016/j.ijpsycho.2008.10.010.
    1. Fan X., Miles J.H., Takahashi N., Yao G. Abnormal transient pupillary light reflex in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2009;39:1499–1508. doi: 10.1007/s10803-009-0767-7.
    1. Rubin L.S. Patterns of pupillary dilatation and constriction in psychotic adults and autistic children. J. Nerv. Ment. Dis. 1961;133:130–142. doi: 10.1097/00005053-196108000-00009.
    1. Kankipati L., Girkin C.A., Gamlin P.D. The post-illumination pupil response is reduced in glaucoma patients. Investig. Ophthalmol. Vis. Sci. 2011;52:2287–2292. doi: 10.1167/iovs.10-6023.
    1. Feigl B., Mattes D., Thomas R., Zele A.J. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Investig. Ophthalmol. Vis. Sci. 2011;52:4362–4367. doi: 10.1167/iovs.10-7069.
    1. Nissen C., Sander B., Milea D., Kolko M., Herbst K., Hamard P., Lund-Andersen H. Monochromatic pupillometry in unilateral glaucoma discloses no adaptive changes subserved by the ipRGCs. Front. Neurol. 2014;5:15. doi: 10.3389/fneur.2014.00015.
    1. Feigl B., Zele A.J., Fader S.M., Howes A.N., Hughes C.E., Jones K.A., Jones R. The post-illumination pupil response of melanopsin-expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmol. 2012;90:e230–e234. doi: 10.1111/j.1755-3768.2011.02226.x.
    1. Dütsch M., Marthol H., Michelson G., Neundörfer B., Hilz M.J. Pupillography refines the diagnosis of diabetic autonomic neuropathy. J. Neurol. Sci. 2004;222:75–81. doi: 10.1016/j.jns.2004.04.008.
    1. Ferrari G.L., Marques J.L., Gandhi R.A., Heller S.R., Schneider F.K., Tesfaye S., Gamba H.R. Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: A pilot study. Biomed. Eng. Online. 2010;9:26. doi: 10.1186/1475-925X-9-26.
    1. Kuroda N., Taniguchi H., Baba S., Yamamoto M. The pupillary light reflex in borderline diabetics. J. Int. Med. Res. 1989;17:205–211. doi: 10.1177/030006058901700302.
    1. Yuan D., Spaeth E.B., Vernino S., Muppidi S. Disproportionate pupillary involvement in diabetic autonomic neuropathy. Clin. Auton. Res. 2014;24:305–309. doi: 10.1007/s10286-014-0258-6.
    1. Dhakal L.P., Sen A., Stanko C.M., Rawal B., Heckman M.G., Hoyne J.B., Dimberg E.L., Freeman M.L., Ng L.K., Rabinstein A.A., et al. Early Absent Pupillary Light Reflexes After Cardiac Arrest in Patients Treated with Therapeutic Hypothermia. Ther. Hypothermia Temp. Manag. 2016;6:116–121. doi: 10.1089/ther.2015.0035.
    1. Fotiou D.F., Brozou C.G., Haidich A.B., Tsiptsios D., Nakou M., Kabitsi A., Giantselidis C., Fotiou F. Pupil reaction to light in Alzheimer’s disease: Evaluation of pupil size changes and mobility. Aging Clin. Exp. Res. 2007;19:364–371. doi: 10.1007/BF03324716.
    1. Granholm E., Morris S., Galasko D., Shults C., Rogers E., Vukov B. Tropicamide effects on pupil size and pupillary light reflexes in Alzheimer’s and Parkinson’s disease. Int. J. Psychophysiol. 2003;47:95–115. doi: 10.1016/S0167-8760(02)00122-8.
    1. Prettyman R., Bitsios P., Szabadi E. Altered pupillary size and darkness and light reflexes in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 1997;62:665–668. doi: 10.1136/jnnp.62.6.665.
    1. Giza E., Fotiou D., Bostantjopoulou S., Katsarou Z., Gerasimou G., Gotzamani-Psarrakou A., Karlovasitou A. Pupillometry and 123I-DaTSCAN imaging in Parkinson’s disease: A comparison study. Int. J. Neurosci. 2012;122:26–34. doi: 10.3109/00207454.2011.619285.
    1. Ferrario E., Molaschi M., Villa L., Varetto O., Bogetto C., Nuzzi R. Is videopupillography useful in the diagnosis of Alzheimer’s disease? Neurology. 1998;50:642–644. doi: 10.1212/WNL.50.3.642.
    1. Park J.C., McAnany J.J. Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex. J. Vis. 2015;15:13. doi: 10.1167/15.3.13.
    1. Yamaji K., Hirata Y., Usui S. A method for monitoring autonomic nervous activity by pupillary flash response. Syst. Comput. Jpn. 2000;31:22–31. doi: 10.1002/(SICI)1520-684X(200004)31:4<22::AID-SCJ3>;2-W.
    1. Chesnut R.M., Gautille T., Blunt B.A., Klauber M.R., Marshall L.E. The localizing value of asymmetry in pupillary size in severe head injury: Relation to lesion type and location. Neurosurgery. 1994;34:840–845. doi: 10.1227/00006123-199405000-00008.
    1. Park J.C., Moss H.E., McAnany J.J. The Pupillary Light Reflex in Idiopathic Intracranial Hypertension. Investig. Ophthalmol. Vis. Sci. 2016;57:23–29. doi: 10.1167/iovs.15-18181.
    1. Taylor W.R., Chen J.W., Meltzer H., Gennarelli T.A., Kelbch C., Knowlton S., Richardson J., Lutch M.J., Farin A., Hults K.N., et al. Quantitative pupillometry, a new technology: Normative data and preliminary observations in patients with acute head injury. J. Neurosurg. 2003;98:205–213. doi: 10.3171/jns.2003.98.1.0205.
    1. Chen J.W., Gombart Z.J., Rogers S., Gardiner S.K., Cecil S., Bullock R.M. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological Pupil index. Surg. Neurol. Int. 2011;2:82. doi: 10.4103/2152-7806.82248.
    1. Morris G.F., Juul N., Marshall S.B., Benedict B., Marshall L.F. Neurological deterioration as a potential alternative endpoint in human clinical trials of experimental pharmacological agents for treatment of severe traumatic brain injuries. Neurosurgery. 1998;43:1369–1372. doi: 10.1227/00006123-199812000-00063.
    1. Meeker M., Du R., Bacchetti P., Privitera C.M., Larson M.D., Holland M.C., Manley G. Pupil examination: Validity and clinical utility of an automated pupillometer. J. Neurosci. Nurs. 2005;37:34–40. doi: 10.1097/01376517-200502000-00006.
    1. Meyer S., Gibb T., Jurkovich G.J. Evaluation and significance of the pupillary light reflex in trauma patients. Ann. Emerg. Med. 1993;22:1052–1057. doi: 10.1016/S0196-0644(05)82750-7.
    1. Couret D., Boumaza D., Grisotto C., Triglia T., Pellegrini L., Ocquidant P., Bruder N.J., Velly L.J. Reliability of standard pupillometry practice in neurocritical care: An observational, double-blinded study. Crit. Care. 2016;20:99. doi: 10.1186/s13054-016-1239-z.
    1. Larson M.D., Muhiudeen I. Pupillometric analysis of the ‘absent light reflex’. Arch. Neurol. 1995;52:369–372. doi: 10.1001/archneur.1995.00540280051018.
    1. Olson D.M., Stutzman S., Saju C., Wilson M., Zhao W., Aiyagari V. Interrater Reliability of Pupillary Assessments. Neurocrit. Care. 2016;24:251–257. doi: 10.1007/s12028-015-0182-1.
    1. Chang D.S., Boland M.V., Arora K.S., Supakontanasan W., Chen B.B., Friedman D.S. Symmetry of the pupillary light reflex and its relationship to retinal nerve fiber layer thickness and visual field defect. Investig. Ophthalmol. Vis. Sci. 2013;54:5596–5601. doi: 10.1167/iovs.13-12142.
    1. Suys T., Bouzat P., Marques-Vidal P., Sala N., Payen J.F., Rossetti A.O., Oddo M. Automated quantitative pupillometry for the prognostication of coma after cardiac arrest. Neurocrit. Care. 2014;21:300–308. doi: 10.1007/s12028-014-9981-z.
    1. Heimburger D., Durand M., Gaide-Chevronnay L., Dessertaine G., Moury P.H., Bouzat P., Albaladejo P., Payen J.F. Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation. 2016;103:88–93. doi: 10.1016/j.resuscitation.2016.02.026.
    1. Sokol D.K., Dunn D.W., Edwards-Brown M., Feinberg J. Hydrogen proton magnetic resonance spectroscopy in autism: Preliminary evidence of elevated choline/creatine ratio. J. Child Neurol. 2002;17:245–249. doi: 10.1177/088307380201700401.
    1. Lee M., Martin-Ruiz C., Graham A., Court J., Jaros E., Perry R., Iversen P., Bauman M., Perry E. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain. 2002;125:1483–1495. doi: 10.1093/brain/awf160.
    1. Perry E.K., Lee M.L., Martin-Ruiz C.M., Court J.A., Volsen S.G., Merrit J., Folly E., Iversen P.E., Bauman M.L., Perry R.H., et al. Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry. 2001;158:1058–1066. doi: 10.1176/appi.ajp.158.7.1058.
    1. Karvat G., Kimchi T. Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology. 2014;39:831–840. doi: 10.1038/npp.2013.274.
    1. McTighe S.M., Neal S.J., Lin Q., Hughes Z.A., Smith D.G. The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS ONE. 2013;8:e62189. doi: 10.1371/journal.pone.0062189.
    1. Leblond C.S., Heinrich J., Delorme R., Proepper C., Betancur C., Huguet G., Konyukh M., Chaste P., Ey E., Rastam M., et al. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 2012;8:e1002521. doi: 10.1371/journal.pgen.1002521.
    1. Daluwatte C., Miles J.H., Sun J., Yao G. Association between pupillary light reflex and sensory behaviors in children with autism spectrum disorders. Res. Dev. Disabil. 2015;37:209–215. doi: 10.1016/j.ridd.2014.11.019.
    1. Daluwatte C., Miles J.H., Christ S.E., Beversdorf D.Q., Takahashi T.N., Yao G. Atypical pupillary light reflex and heart rate variability in children with autism spectrum disorder. J. Autism Dev. Disord. 2013;43:1910–1925. doi: 10.1007/s10803-012-1741-3.
    1. Nyström P., Gredebäck G., Bölte S., Falck-Ytter T., EASE Team Hypersensitive pupillary light reflex in infants at risk for autism. Mol. Autism. 2015;6:10. doi: 10.1186/s13229-015-0011-6.
    1. Dockstader C., Gaetz W., Rockel C., Mabbott D.J. White matter maturation in visual and motor areas predicts the latency of visual activation in children. Hum. Brain Mapp. 2012;33:179–191. doi: 10.1002/hbm.21203.
    1. Ben Bashat D., Kronfeld-Duenias V., Zachor D.A., Ekstein P.M., Hendler T., Tarrasch R., Even A., Levy Y., Ben Sira L. Accelerated maturation of white matter in young children with autism: A high b value DWI study. Neuroimage. 2007;37:40–47. doi: 10.1016/j.neuroimage.2007.04.060.
    1. Courchesne E. Abnormal early brain development in autism. Mol. Psychiatry. 2002;7(Suppl. 2):S21–S23. doi: 10.1038/sj.mp.4001169.
    1. Courchesne E., Karns C.M., Davis H.R., Ziccardi R., Carper R.A., Tigue Z.D., Chisum H.J., Moses P., Pierce K., Lord C., et al. Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology. 2001;57:245–254. doi: 10.1212/WNL.57.2.245.
    1. Weinstein M., Ben-Sira L., Levy Y., Zachor D.A., Ben Itzhak E., Artzi M., Tarrasch R., Eksteine P.M., Hendler T., Ben Bashat D. Abnormal white matter integrity in young children with autism. Hum. Brain Mapp. 2011;32:534–543. doi: 10.1002/hbm.21042.
    1. Wolff J.J., Gu H., Gerig G., Elison J.T., Styner M., Gouttard S., Botteron K.N., Dager S.R., Dawson G., Estes A.M., et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry. 2012;169:589–600. doi: 10.1176/appi.ajp.2011.11091447.
    1. Vissers M.E., Cohen M.X., Geurts H.M. Brain connectivity and high functioning autism: A promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci. Biobehav. Rev. 2012;36:604–625. doi: 10.1016/j.neubiorev.2011.09.003.
    1. Courchesne E., Campbell K., Solso S. Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–145. doi: 10.1016/j.brainres.2010.09.101.
    1. DeVito T.J., Drost D.J., Neufeld R.W., Rajakumar N., Pavlosky W., Williamson P., Nicolson R. Evidence for cortical dysfunction in autism: A proton magnetic resonance spectroscopic imaging study. Biol. Psychiatry. 2007;61:465–473. doi: 10.1016/j.biopsych.2006.07.022.
    1. Monticelli F., Priemer F., Hitzl W., Keller T. Pupil function as an indicator for being under the influence of central nervous system-acting substances from a traffic-medicine perspective. Med. Sci. Law. 2010;50:75–83. doi: 10.1258/msl.2010.010009.
    1. Monticelli F.C., Hitzl W., Priemer F., Preiss U., Kunz S.N., Keller T. The potential of infrared pupillography in routine police traffic checks. Rechtsmedizin. 2015;25:466–473. doi: 10.1007/s00194-015-0023-8.
    1. Monticelli F.C., Tutsch-Bauer E., Hitzl W., Keller T. Pupil function as a parameter for assessing impairment of the central nervous system from a traffic-medicine perspective. Leg. Med. 2009;11(Suppl. 1):S331–S332. doi: 10.1016/j.legalmed.2009.02.009.
    1. Hartman R.L., Richman J.E., Hayes C.E., Huestis M.A. Drug Recognition Expert (DRE) examination characteristics of cannabis impairment. Accid. Anal. Prev. 2016;92:219–229. doi: 10.1016/j.aap.2016.04.012.
    1. Kosnoski E.M., Yolton R.L., Citek K., Hayes C.E., Evans R.B. The Drug Evaluation Classification Program: Using ocular and other signs to detect drug intoxication. J. Am. Optom. Assoc. 1998;69:211–227.
    1. Lobato-Rincón L.L., Cabanillas Campos M.C., Navarro-Valls J.J., Bonnin-Arias C., Chamorro E., Sánchez-Ramos Roda C. Utility of dynamic pupillometry in alcohol testing on drivers. Adicciones. 2013;25:137–145. doi: 10.20882/adicciones.61.
    1. Pickworth W.B., Rohrer M.S., Fant R.V. Effects of abused drugs on psychomotor performance. Exp. Clin. Psychopharmacol. 1997;5:235–241. doi: 10.1037/1064-1297.5.3.235.
    1. Tennant F. The rapid eye test to detect drug abuse. Postgrad. Med. 1988;84:108–114. doi: 10.1080/00325481.1988.11700339.
    1. Sagawa Y., Kondo H., Matsubuchi N., Takemura T., Kanayama H., Kaneko Y., Kanbayashi T., Hishikawa Y., Shimizu T. Alcohol has a dose-related effect on parasympathetic nerve activity during sleep. Alcohol. Clin. Exp. Res. 2011;35:2093–2100. doi: 10.1111/j.1530-0277.2011.01558.x.
    1. Jochum T., Hoyme J., Schulz S., Weißenfels M., Voss A., Bär K.J. Diverse autonomic regulation of pupillary function and the cardiovascular system during alcohol withdrawal. Drug Alcohol Depend. 2016;159:142–151. doi: 10.1016/j.drugalcdep.2015.12.030.
    1. Engberg G., Hajós M. Alcohol withdrawal reaction as a result of adaptive changes of excitatory amino acid receptors. Naunyn Schmiedeberg Arch. Pharmacol. 1992;346:437–441. doi: 10.1007/BF00171087.
    1. Knapp D.J., Duncan G.E., Crews F.T., Breese G.R. Induction of Fos-like proteins and ultrasonic vocalizations during ethanol withdrawal: Further evidence for withdrawal-induced anxiety. Alcohol. Clin. Exp. Res. 1998;22:481–493. doi: 10.1097/00000374-199804000-00027.
    1. Fant R.V., Heishman S.J., Bunker E.B., Pickworth W.B. Acute and residual effects of marijuana in humans. Pharmacol. Biochem. Behav. 1998;60:777–784. doi: 10.1016/S0091-3057(97)00386-9.
    1. Hysek C.M., Liechti M.E. Effects of MDMA alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin on pupillary light reflex. Psychopharmacology. 2012;224:363–376. doi: 10.1007/s00213-012-2761-6.
    1. Hepler R.S., Frank I.M., Ungerleider J.T. Pupillary constriction after marijuana smoking. Am. J. Ophthalmol. 1972;74:1185–1190. doi: 10.1016/0002-9394(72)90741-6.
    1. Burgen A.S., Dickens F., Zatman L.J. The action of botulinum toxin on the neuro-muscular junction. J. Physiol. 1949;109:10–24. doi: 10.1113/jphysiol.1949.sp004364.
    1. Sellin L.C. The pharmacological mechanism of botulism. Trends Pharmacol. Sci. 1985;6:80–82. doi: 10.1016/0165-6147(85)90033-1.
    1. Hemmerdinger C., Srinivasan S., Marsh I.B. Reversible pupillary dilation following botulinum toxin injection to the lateral rectus. Eye. 2006;20:1478–1479. doi: 10.1038/sj.eye.6702366.
    1. Penas S.C., Faria O.M., Serrão R., Capão-Filipe J.A., Mota-Miranda A., Falcão-Reis F. Ophthalmic manifestations in 18 patients with botulism diagnosed in Porto, Portugal between 1998 and 2003. J. Neuroophthalmol. 2005;25:262–267. doi: 10.1097/01.wno.0000189828.46763.08.
    1. Akkaya S., Kökcen H.K., Atakan T. Unilateral transient mydriasis and ptosis after botulinum toxin injection for a cosmetic procedure. Clin. Ophthalmol. 2015;9:313–315. doi: 10.2147/OPTH.S76054.
    1. Christiansen S.P., Chandler D.L., Lee K.A., Superstein R., de Alba Campomanes A., Bothun E.D., Morin J., Wallace D.K., Kraker R.T. Pediatric Eye Disease Investigator Group. Tonic pupil after botulinum toxin-A injection for treatment of esotropia in children. J. AAPOS. 2016;20:78–81. doi: 10.1016/j.jaapos.2015.09.011.
    1. Dabisch P.A., Burnett D.C., Miller D.B., Jakubowski E.M., Muse W.T., Forster J.S., Scotto J.A., Jarvis J.R., Davis E.A., Hulet S.W., et al. Tolerance to the miotic effect of sarin vapor in rats after multiple low-level exposures. J. Ocul. Pharmacol. Ther. 2005;21:182–195. doi: 10.1089/jop.2005.21.182.
    1. Dabisch P.A., Miller D.B., Reutter S.A., Mioduszewski R.J., Thomson S.A. Miotic tolerance to sarin vapor exposure: Role of the sympathetic and parasympathetic nervous systems. Toxicol. Sci. 2005;85:1041–1047. doi: 10.1093/toxsci/kfi151.
    1. Yanagisawa N., Morita H., Nakajima T. Sarin experiences in Japan: Acute toxicity and long-term effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007.
    1. Rengstorff R.H. Vision and ocular changes following accidental exposure to organophosphates. J. Appl. Toxicol. 1994;14:115–118. doi: 10.1002/jat.2550140213.
    1. Smith S.A., Smith S.E. Factors determining the potency of cholinomimetic miotic drugs and their effect upon the light reflex in man. Br. J. Clin. Pharmacol. 1978;6:149–153. doi: 10.1111/j.1365-2125.1978.tb00840.x.
    1. Taylor J.T., Davis E., Dabisch P., Horsmon M., Li M., Mioduszewski R. Alterations in autonomic function in the guinea pig eye following exposure to dichlorvos vapor. J. Ocul. Pharmacol. Ther. 2008;24:473–479. doi: 10.1089/jop.2008.0020.
    1. Genovese R.F., Benton B.J., Oubre J.L., Fleming P.J., Jakubowski E.M., Mioduszewski R.J. Evaluation of miosis, behavior and cholinesterase inhibition from low-level, whole-body vapor exposure to soman in African green monkeys (Chlorocebus sabeus) J. Med. Primatol. 2010;39:318–327. doi: 10.1111/j.1600-0684.2010.00413.x.
    1. Nozaki H., Hori S., Shinozawa Y., Fujishima S., Takuma K., Kimura H., Suzuki M., Aikawa N. Relationship between pupil size and acetylcholinesterase activity in patients exposed to sarin vapor. Intensive Care Med. 1997;23:1005–1007. doi: 10.1007/s001340050447.
    1. Hulet S.W., Sommerville D.R., Crosier R.B., Dabisch P.A., Miller D.B., Benton B.J., Forster J.S., Scotto J.A., Jarvis J.R., Krauthauser C., et al. Comparison of low-level sarin and cyclosarin vapor exposure on pupil size of the Gottingen minipig: Effects of exposure concentration and duration. Inhal. Toxicol. 2006;18:143–153. doi: 10.1080/08958370500306131.
    1. Dabisch P.A., Horsmon M.S., Taylor J.T., Muse W.T., Miller D.B., Sommerville D.R., Mioduszewski R.J., Thomson S. Gender difference in the miotic potency of soman vapor in rats. Cutan. Ocul. Toxicol. 2008;27:123–133. doi: 10.1080/15569520802064376.
    1. Tandon P., Padilla S., Barone S., Jr., Pope C.N., Tilson H.A. Fenthion produces a persistent decrease in muscarinic receptor function in the adult rat retina. Toxicol. Appl. Pharmacol. 1994;125:271–280. doi: 10.1006/taap.1994.1073.
    1. Dabisch P.A., Horsmon M.S., Muse W.T., Mioduszewski R.J., Thomson S. Muscarinic receptor dysfunction induced by exposure to low levels of soman vapor. Toxicol. Sci. 2007;100:281–289. doi: 10.1093/toxsci/kfm213.
    1. Gore A., Bloch-Shilderman E., Egoz I., Turetz J., Brandeis R. Efficacy assessment of a combined anticholinergic and oxime treatment against topical sarin-induced miosis and visual impairment in rats. Br. J. Pharmacol. 2014;171:2364–2374. doi: 10.1111/bph.12586.
    1. Lotti M. Handbook of Pesticide Toxicology. Elsevier; Amsterdam, The Netherlands: 2001. Clinical Toxicology of Anticholinesterase Agents in Humans; pp. 1043–1085.
    1. Shirakawa S., Ishikawa S., Miyata M., Rea W.J., Johnson A.R. A pupillographical study on the presence of organochlorine pesticides in autonomic nerve disturbance. Nippon Ganka Gakkai Zasshi. 1990;94:418–423.
    1. Pavlov V.A., Wang H., Czura C.J., Friedman S.G., Tracey K.J. The cholinergic anti-inflammatory pathway: A missing link in neuroimmunomodulation. Mol. Med. 2003;9:125–134. doi: 10.1016/j.bbi.2005.03.015.
    1. Tracey K.J. The inflammatory reflex. Nature. 2002;420:853–859. doi: 10.1038/nature01321.
    1. Sternberg E.M. Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006;6:318–328. doi: 10.1038/nri1810.
    1. Goehler L.E., Gaykema R.P., Hansen M.K., Anderson K., Maier S.F., Watkins L.R. Vagal immune-to-brain communication: A visceral chemosensory pathway. Auton. Neurosci. Basic Clin. 2000;85:49–59. doi: 10.1016/S1566-0702(00)00219-8.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x.
    1. Huang K.J., Su I.J., Theron M., Wu Y.C., Lai S.K., Liu C.C., Lei H.Y. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol. 2005;75:185–194. doi: 10.1002/jmv.20255.
    1. Yiu H.H., Graham A.L., Stengel R.F. Dynamics of a cytokine storm. PLoS ONE. 2012;7:e45027. doi: 10.1371/journal.pone.0045027.
    1. Liu Q., Zhou Y.H., Yang Z.Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 2016;13:3–10. doi: 10.1038/cmi.2015.74.
    1. Mohamadzadeh M., Chen L., Schmaljohn A.L. How Ebola and Marburg viruses battle the immune system. Nat. Rev. Immunol. 2007;7:556–567. doi: 10.1038/nri2098.
    1. Kessler B., Rinchai D., Kewcharoenwong C., Nithichanon A., Biggart R., Hawrylowicz C.M., Bancroft G.J., Lertmemongkolchai G. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Sci. Rep. 2017;7:42791. doi: 10.1038/srep42791.
    1. Pechous R.D., Sivaraman V., Price P.A., Stasulli N.M., Goldman W.E. Early host cell targets of Yersinia pestis during primary pneumonic plague. PLoS Pathog. 2013;9:e1003679. doi: 10.1371/journal.ppat.1003679.
    1. Samuels E.R., Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 2008;6:254–285. doi: 10.2174/157015908785777193.
    1. Szabadi E. Modulation of physiological reflexes by pain: Role of the locus coeruleus. Front. Integr. Neurosci. 2012;6:94. doi: 10.3389/fnint.2012.00094.
    1. Song X.M., Li J.G., Wang Y.L., Hu Z.F., Zhou Q., Du Z.H., Jia B.H. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock. 2008;30:468–472. doi: 10.1097/SHK.0b013e31816d5e49.
    1. Van Westerloo D.J., Giebelen I.A., Florquin S., Daalhuisen J., Bruno M.J., de Vos A.F., Tracey K.J., van der Poll T. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J. Infect. Dis. 2005;191:2138–2148. doi: 10.1086/430323.
    1. Wang H., Liao H., Ochani M., Justiniani M., Lin X., Yang L., Al-Abed Y., Wang H., Metz C., Miller E.J., et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 2004;10:1216–1221. doi: 10.1038/nm1124.
    1. Giebelen I.A., Leendertse M., Florquin S., van der Poll T. Stimulation of acetylcholine receptors impairs host defence during pneumococcal pneumonia. Eur. Respir. J. 2009;33:375–381. doi: 10.1183/09031936.00103408.
    1. Pavlov V.A., Parrish W.R., Rosas-Ballina M., Ochani M., Puerta M., Ochani K., Chavan S., Al-Abed Y., Tracey K.J. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2009;23:41–45. doi: 10.1016/j.bbi.2008.06.011.
    1. Pavlov V.A., Tracey K.J. Controlling inflammation: The cholinergic anti-inflammatory pathway. Biochem. Soc. Trans. 2006;34:1037–1040. doi: 10.1042/BST0341037.
    1. Rosas-Ballina M., Valdés-Ferrer S.I., Dancho M.E., Ochani M., Katz D., Cheng K.F., Olofsson P.S., Chavan S.S., Al-Abed Y., Tracey K.J., et al. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav. Immun. 2015;44:19–27. doi: 10.1016/j.bbi.2014.07.010.
    1. Da Silva C.B., Wolkmer P., Da Silva A.S., Paim F.C., Tonin A.A., Castro V.S., Felin D.V., Schmatz R., Gonçalves J.F., Badke M.R., et al. Cholinesterases as markers of the inflammatory process in rats infected with Leptospira interrogans serovar Icterohaemorrhagiae. J. Med. Microbiol. 2012;61:278–284. doi: 10.1099/jmm.0.035501-0.
    1. Carr M.J., Goldie R.G., Henry P.J. Influence of respiratory tract viral infection on endothelin-1-induced potentiation of cholinergic nerve-mediated contraction in mouse trachea. Br. J. Pharmacol. 1996;119:891–898. doi: 10.1111/j.1476-5381.1996.tb15756.x.
    1. Ng Y.P., Lee S.M., Cheung T.K., Nicholls J.M., Peiris J.S., Ip N.Y. Avian influenza H5N1 virus induces cytopathy and proinflammatory cytokine responses in human astrocytic and neuronal cell lines. Neuroscience. 2010;168:613–623. doi: 10.1016/j.neuroscience.2010.04.013.
    1. Barbur J.L., Harlow A.J., Sahraie A. Pupillary responses to stimulus structure, colour and movement. Ophthalmic Physiol. Opt. 1992;12:137–141. doi: 10.1111/j.1475-1313.1992.tb00276.x.
    1. Fan X., Hearne L., Lei B., Miles J.H., Takahashi N., Yao G. Weak gender effects on transient pupillary light reflex. Auton. Neurosci. Basic Clin. 2009;147:9–13. doi: 10.1016/j.autneu.2008.12.010.
    1. Fotiou D.F., Brozou C.G., Tsiptsios D.J., Fotiou A., Kabitsi A., Nakou M., Giantselidis C., Goula A. Effect of age on pupillary light reflex: Evaluation of pupil mobility for clinical practice and research. Electromyogr. Clin. Neurophysiol. 2007;47:11–22.
    1. Straub R.H., Thies U., Kerp L. The pupillary light reflex. 1. Age-dependent and age-independent parameters in normal subjects. Ophthalmologica. 1992;204:134–142. doi: 10.1159/000310282.
    1. Bergamin O., Schoetzau A., Sugimoto K., Zulauf M. The influence of iris color on the pupillary light reflex. Graefe Arch. Clin. Exp. Ophthalmol. 1998;236:567–570. doi: 10.1007/s004170050122.
    1. Slooter J., van Norren D. Visual acuity measured with pupil responses to checkerboard stimuli. Investig. Ophthalmol. Vis. Sci. 1980;19:105–108.
    1. Ukai K. Spatial pattern as a stimulus to the pupillary system. J. Opt. Soc. Am. A. 1985;2:1094–1100. doi: 10.1364/JOSAA.2.001094.
    1. Beatty J. Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychol. Bull. 1982;91:276–292. doi: 10.1037/0033-2909.91.2.276.
    1. Newsome D.A., Loewenfeld I.E. Iris mechanics. II. Influence of pupil size on details of iris structure. Am. J. Ophthalmol. 1971;71:553–573. doi: 10.1016/0002-9394(71)90133-4.

Source: PubMed

3
Subscribe