Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis

Barbara R Lucas, Elizabeth J Elliott, Sarah Coggan, Rafael Z Pinto, Tracy Jirikowic, Sarah Westcott McCoy, Jane Latimer, Barbara R Lucas, Elizabeth J Elliott, Sarah Coggan, Rafael Z Pinto, Tracy Jirikowic, Sarah Westcott McCoy, Jane Latimer

Abstract

Background: Gross motor skills are fundamental to childhood development. The effectiveness of current physical therapy options for children with mild to moderate gross motor disorders is unknown. The aim of this study was to systematically review the literature to investigate the effectiveness of conservative interventions to improve gross motor performance in children with a range of neurodevelopmental disorders.

Methods: A systematic review with meta-analysis was conducted. MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PEDro, Cochrane Collaboration, Google Scholar databases and clinical trial registries were searched. Published randomised controlled trials including children 3 to ≤18 years with (i) Developmental Coordination Disorder (DCD) or Cerebral Palsy (CP) (Gross Motor Function Classification System Level 1) or Developmental Delay or Minimal Acquired Brain Injury or Prematurity (<30 weeks gestational age) or Fetal Alcohol Spectrum Disorders; and (ii) receiving non-pharmacological or non-surgical interventions from a health professional and (iii) gross motor outcomes obtained using a standardised assessment tool. Meta-analysis was performed to determine the pooled effect of intervention on gross motor function. Methodological quality and strength of meta-analysis recommendations were evaluated using PEDro and the GRADE approach respectively.

Results: Of 2513 papers, 9 met inclusion criteria including children with CP (n = 2) or DCD (n = 7) receiving 11 different interventions. Only two of 9 trials showed an effect for treatment. Using the least conservative trial outcomes a large beneficial effect of intervention was shown (SMD:-0.8; 95% CI:-1.1 to -0.5) with "very low quality" GRADE ratings. Using the most conservative trial outcomes there is no treatment effect (SMD:-0.1; 95% CI:-0.3 to 0.2) with "low quality" GRADE ratings. Study limitations included the small number and poor quality of the available trials.

Conclusion: Although we found that some interventions with a task-orientated framework can improve gross motor outcomes in children with DCD or CP, these findings are limited by the very low quality of the available evidence. High quality intervention trials are urgently needed.

Keywords: Cerebral palsy; Child development; Developmental Coordination Disorder; Motor skills; Motor skills disorders; Neurodevelopmental disorders; Physiotherapy.

Figures

Fig. 1
Fig. 1
Identification and selection of studies for the review
Fig. 2
Fig. 2
Forest plot—all treatment effects
Fig. 3
Fig. 3
Forest plot−most conservative treatment effects
Fig. 4
Fig. 4
Forest plot−least conservative treatment effects

References

    1. Kolehmainen N, Francis JJ, Ramsay CR, Owen C, McKee L, Ketelaar M, et al. Participation in physical play and leisure: developing a theory- and evidence-based intervention for children with motor impairments. BMC Pediatr. 2011;11:100. doi: 10.1186/1471-2431-11-100.
    1. Guidelines for School and Community Programs to Promote Lifelong Physical Activity Among Young People. Centers for Disease Control and Prevention, Morbidity and Mortality Weekly Report; Recommendations and Reports. March 07, 1997;46(RR-6):1–36. . Accessed 20 Aug 2015.
    1. Fundamental Movement Skills. ACT Government, Health. Kids at Play. . Accessed 8 Aug 2015.
    1. Roberts G, Anderson PJ, Davis N, De Luca C, Cheong J, Doyle LW, et al. Developmental coordination disorder in geographic cohorts of 8-year-old children born extremely preterm or extremely low birthweight in the 1990s. Dev Med Child Neurol. 2011;53(1):55–60. doi: 10.1111/j.1469-8749.2010.03779.x.
    1. Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive abilities. Hum Mov Sci. 2008;27:668–681. doi: 10.1016/j.humov.2007.11.002.
    1. Australian Institute of Health and Welfare . Risk factors contributing to chronic disease. Cat No. PHE 157. Canberra: AIHW; 2012.
    1. Green D, Lingam R, Mattocks C, Riddoch C, Ness A, Emond A. The risk of reduced physical activity in children with probable Developmental Coordination Disorder: a prospective longitudinal study. Res Dev Disabil. 2011;32(4):1332–42. doi: 10.1016/j.ridd.2011.01.040.
    1. Wang T-N, Tseng M-H, Wilson BN, Hu F-C. Functional performance of children with developmental coordination disorder at home and at school. Dev Med Child Neurol. 2009;51(10):817–25. doi: 10.1111/j.1469-8749.2009.03271.x.
    1. Physiotherapy, Paediatrics. Role of Physiotherapy. Australian Physiotherapy Association. . Accessed 5 Sept 2015.
    1. Polatajko HJ, Macnab JJ, Anstett B, Malloy-Miller T, Murphy K, Noh S. A clinical trial of the process-orientated treatment approach for children with developmental co-ordination disorder. Dev Med and Child Neurol. 1995;37:310–319. doi: 10.1111/j.1469-8749.1995.tb12009.x.
    1. Blank R, Smits-Engelsman B, Polatajko H, Wilson P. European Academy for Childhood Disability (EACD): recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version) Dev Med Child Neurol. 2012;54(1):54–93. doi: 10.1111/j.1469-8749.2011.04171.x.
    1. Larin HM. Physical Therapy for Children. In: Campbell SK, Vander Linden DW, Palisano RJ, editors. Chapter 4; Motor Learning: Theories and Strategies for the Practitioner. Missouri: Saunders Elsevier; 2006.
    1. Morgan C, Novak I, Badawi N. Enriched environments and motor outcomes in cerebral palsy: systematic review and meta-analysis. Pediatrics. 2013;132(3):e735–46. doi: 10.1542/peds.2012-3985.
    1. Shonkoff J, Phillips D, editors. Committee on Integrating the Science of Early Childhood. Development Board on Children, Youth, and Families. From Neurons to Neighborhoods: The Science of Early Childhood Development. Washington: National Academies Press; 2000.
    1. Vaccarino F, Ment L. Injury and repair in the developing brain. Arch Dis Child Fetal Neonatal Ed. 2004;89(3):F190–F192. doi: 10.1136/adc.2003.043661.
    1. Boschen KE, Goodlett CR, Greenough WT, Klintsova AY. Housing in environmental complexity following wheel running augments survival of newly generated hippocampal neurons in a rat model of binge alcohol exposure during the third trimester equivalent. Alcohol Clin Exp Res. 2012;36(7):1196–204. doi: 10.1111/j.1530-0277.2011.01726.x.
    1. Scamra C, Hoffman M, Napper RMA, Goodlett CR, Greenough WT. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Res. 2002;937(1–2):83–93.
    1. Klintsova AY, Greenough WT, Goodlett CR. Rehabilitation training using complex motor learning rescues deficits in eyeblink classical conditioning in female rats induced by binge-like neonatal alcohol exposure. Alcohol Clin Exp Res. 2013;37(9):1561–70. doi: 10.1111/acer.12122.
    1. Morgan C, Novak I, Dale RC, Badawi N. Optimising motor learning in infants at high risk of cerebral palsy: a pilot study. BMC Pediatr. 2015;15:30. doi: 10.1186/s12887-015-0347-2.
    1. Smits-Engelsman BCM, Blank R, van der Kaay A, Mosterd-van der Meijs R, Vlugt-van den Brand E, Polatajko HJ, Wilson PH. Efficacy of interventions to improve motor performance in children with developmental coordination disorder: a combined systematic review and meta-analysis. Dev Med and Child Neurol. 2013;55(3):229–237. doi: 10.1111/dmcn.12008.
    1. Palisano RJ, Rosenbaum PL, Walter SD, Russell DJ, Wood EP, Galuppi BE. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. CanChild Resources. Gross Motor Function Classification System - Expanded & Revised (GMFCS - E & R). Available at . Accessed 8 Aug 2015.
    1. Williams J, Lee KJ, Anderson PJ. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(3):232–7. doi: 10.1111/j.1469-8749.2009.03544.x.
    1. Bland DC, Zampieri C, Damiano DL. Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: a systematic review. Brain Inj. 2011;25(7–8):664–679. doi: 10.3109/02699052.2011.576306.
    1. Arciniegas DB, Anderson CA, Topkoff J, McAllister TW. Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr Dis Treat. 2005;1(4):311–327.
    1. World Health Organisation, Media Centre, Preterm birth, Fact sheet N°363, Updated Nov 2014. Available at . Accessed 25 Nov 2014.
    1. Australian Institute of Health and Welfare. A picture of Australian’s children 2012. Chapter 15: Birthweight, 2012:57–59. Available at; . Accessed 15 Nov 2014.
    1. Lucas BR, Latimer J, Pinto RZ, Ferreira ML, Doney R, Lau M, Jones T, Dries D, Elliott EJ. Gross Motor Deficits in Children Prenatally Exposed to Alcohol: a Meta-Analysis. Pediatrics. June 9 2014. DOI: 10.1542/peds.2013%E2%80%933733.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi: 10.1136/bmj.b2535.
    1. Macedo LG, Elkins MR, Maher CG, Moseley AM, Herbert RD, Sherrington C. There was evidence of convergent and construct validity of Physiotherapy Evidence Database quality scale for physiotherapy trials. J Clin Epidemiol. 2010;63:920–5. doi: 10.1016/j.jclinepi.2009.10.005.
    1. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.
    1. Physiotherapy Evidence Database (PEDro). Available at: . Accessed 14 Sept 2014.
    1. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schünemann HJ, Edejer TT, Varonen H, Vist GE, Williams JW, Jr, Zaza S, GRADE Working Group Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. doi: 10.1136/bmj.328.7454.1490.
    1. Shaheed CA, Maher CG, Williams KA, McLachlan AJ. Interventions available over the counter and advice for acute low back pain: a systematic review and meta-analysis. J Pain. 2014;15(1):2–15. doi: 10.1016/j.jpain.2013.09.016.
    1. Henschke N, Ostelo RWJG, van Tulder MW, Vlaeyen JWS, Morley S, Assendelft WJJ, Main CJ. Behavioural treatment for chronic low-b1ack pain. Cochrane Database Syst Rev. 2010; Issue 7. Art. No.: CD002014. DOI:10.1002/14651858.CD002014.pub3.
    1. Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002. doi: 10.1136/bmj.d4002.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34. doi: 10.1136/bmj.315.7109.629.
    1. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epi. 2011;64(4):401–6. doi: 10.1016/j.jclinepi.2010.07.015.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. Hillsdale: Erlbaum; 1988.
    1. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557. doi: 10.1136/bmj.327.7414.557.
    1. Higgins JPT, Green S (Eds). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available at: . Accessed 15 Nov 2014.
    1. Chapter 9.5.4 Incorporating heterogeneity into random-effects models Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available at: . Accessed 15 Nov 2014.
    1. Peens A, Pienaar AE, Nienaber AW. The effect of different intervention programmes on the self-concept and motor proficiency of 7- to 9-year-old children with DCD. Child Care Health Dev. 2008;34(3):316–328. doi: 10.1111/j.1365-2214.2007.00803.x.
    1. Ledebt A, Becher J, Kapper J, Rozendaal RM, Bakker R, Leenders IC, Savelsbergh GJP. Balance training with visual feedback in children with hemiplegic cerebral palsy: effect on stance and gait. Mot Control. 2005;9(4):459–468. doi: 10.1123/mcj.9.4.459.
    1. Tsai C-L. The effectiveness of exercise intervention on inhibitory control in children with developmental coordination disorder: using a visuospatial attention paradigm as a model. Res Dev Disabil. 2009;30(6):1268–1280. doi: 10.1016/j.ridd.2009.05.001.
    1. Hillier S, McIntyre A, Plummer L. Aquatic physical therapy for children with developmental coordination disorder: a pilot randomized controlled trial. Phys Occup Ther Pediatr. 2010;30(2):111–124. doi: 10.3109/01942630903543575.
    1. Chrysagis N, Skordilis EK, Stavrou N, Grammatopoulou E, Koutsouki D. The effect of treadmill training on gross motor function and walking speed in ambulatory adolescents with cerebral palsy: a randomized controlled trial. Am J of Phys Med Rehab. 2012;91(9):747–760. doi: 10.1097/PHM.0b013e3182643eba.
    1. Fong S, Tsang W, Ng G. Taekwondo training improves sensory organization and balance control in children with developmental coordination disorder: A randomized controlled trial. Res Dev Disabil. 2012;33(1):85–95. doi: 10.1016/j.ridd.2011.08.023.
    1. Fong SSM, Chung JWY, Chow LPY, Ma AWW, Tsang WWN. Differential effect of Taekwondo training on knee muscle strength and reactive and static balance control in children with developmental coordination disorder: a randomized controlled trial. Res Dev Disabil. 2013;34(5):1446–1455. doi: 10.1016/j.ridd.2013.01.025.
    1. Hammond J, Jones V, Hill EL, Green D, Male I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study [with consumer summary] Child Care Health Dev. 2014;40(2):165–175. doi: 10.1111/cch.12029.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. Fifth. Arlington: American Psychiatric Association; 2013.
    1. Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro) Aust J Physiother. 2002;48:43–49. doi: 10.1016/S0004-9514(14)60281-6.
    1. Pless M, Carlsson M. Effects of motor skill intervention on developmental coordination disorder: A meta-analysis. Adapt Phys Act. 2000;17:361–401.
    1. Mandich AD, Polatajko HJ, Macnab JJ, Miller LT. Treatment of children with Developmental Coordination Disorder: What is the evidence? Phys Occup Ther Pediatr. 2001;20(2–3):51–68.
    1. Laufer Y, Weiss PL. Virtual reality in the assessment and treatment of children with motor impairment: a systematic review. J Phys Ther Sci. 2011;25(1):59–71.
    1. Sandlund M, McDonough S, Hager-Ross C. Interactive computer play in rehabilitation of children with sensorimotor disorders: a systematic review. Dev Med Child Neurol. 2009;51(3):173–179. doi: 10.1111/j.1469-8749.2008.03184.x.
    1. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129–33. doi: 10.1016/S0004-9514(09)70043-1.
    1. Niemeijer AS, Smits_Engelsman BCM, Shoemaker MM. Neuromotor task training for children with developmental co-ordination disorder: a controlled trial. Dev Med Child Neurol. 2007;49(6):406–11. doi: 10.1111/j.1469-8749.2007.00406.x.
    1. Weingarten MA, Paul M, Leibovici L. Assessing ethics of trials in systematic reviews. BMJ. 2004;328(7446):1013–1014. doi: 10.1136/bmj.328.7446.1013.
    1. Eccles MP, Weijer C, Mittman B. Requirements for ethics committee review for studies submitted to Implementation Science. Implement Sci. 2011;6(1):1. doi: 10.1186/1748-5908-6-1.

Source: PubMed

3
Subscribe