Epicardial delivery of autologous atrial appendage micrografts during coronary artery bypass surgery-safety and feasibility study

Annu Nummi, Tuomo Nieminen, Tommi Pätilä, Milla Lampinen, Miia L Lehtinen, Sari Kivistö, Miia Holmström, Erika Wilkman, Kari Teittinen, Mika Laine, Juha Sinisalo, Markku Kupari, Esko Kankuri, Tatu Juvonen, Antti Vento, Raili Suojaranta, Ari Harjula, AADC consortium, Ari Harjula, Antti Vento, Juha Sinisalo, Mika Laine, Markku Kupari, Tatu Juvonen, Kari Teittinen, Annu Nummi, Miia Lehtinen, Tuomo Nieminen, Tommi Pätilä, Eero Mervaala, Esko Kankuri, Milla Lampinen, Sari Kivistö, Miia Holmström, Raili Suojaranta, Erika Wilkman, Jari Laurikka, Shengshou Hu, Zhe Zheng, Xie Yanbo, Annu Nummi, Tuomo Nieminen, Tommi Pätilä, Milla Lampinen, Miia L Lehtinen, Sari Kivistö, Miia Holmström, Erika Wilkman, Kari Teittinen, Mika Laine, Juha Sinisalo, Markku Kupari, Esko Kankuri, Tatu Juvonen, Antti Vento, Raili Suojaranta, Ari Harjula, AADC consortium, Ari Harjula, Antti Vento, Juha Sinisalo, Mika Laine, Markku Kupari, Tatu Juvonen, Kari Teittinen, Annu Nummi, Miia Lehtinen, Tuomo Nieminen, Tommi Pätilä, Eero Mervaala, Esko Kankuri, Milla Lampinen, Sari Kivistö, Miia Holmström, Raili Suojaranta, Erika Wilkman, Jari Laurikka, Shengshou Hu, Zhe Zheng, Xie Yanbo

Abstract

Background: The atrial appendages are a tissue reservoir for cardiac stem cells. During on-pump coronary artery bypass graft (CABG) surgery, part of the right atrial appendage can be excised upon insertion of the right atrial cannula of the heart-lung machine. In the operating room, the removed tissue can be easily cut into micrografts for transplantation. This trial aims to assess the safety and feasibility of epicardial transplantation of atrial appendage micrografts in patients undergoing CABG surgery.

Methods/design: Autologous cardiac micrografts are made from leftover right atrial appendage during CABG of 6 patients. Atrial appendage is mechanically processed to micrografts consisting of atrial appendage-derived cells (AADCs) and their extracellular matrix (ECM). The micrografts are epicardially transplanted in a fibrin gel and covered with a tissue-engineered ECM sheet. Parameters including echocardiography-reflecting cardiac insufficiency-are studied pre- and post-operatively as well as at 3 and 6 months of the follow-up. Cardiac functional magnetic resonance imaging is performed preoperatively and at 6-month follow-up. The primary outcome measures are patient safety in terms of hemodynamic and cardiac function over time and feasibility of therapy administration in a clinical setting. Secondary outcome measures are left ventricular wall thickness, change in the amount of myocardial scar tissue, changes in left ventricular ejection fraction, plasma concentrations of N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, New York Heart Association class, days in hospital, and changes in the quality of life. Twenty patients undergoing routine CAGB surgery will be recruited to serve as a control group.

Discussion: This study aims to address the surgical feasibility and patient safety of epicardially delivered atrial appendage micrografts during CABG surgery. Delivery of autologous micrografts and AADCs has potential applications for cell and cell-based gene therapies.

Trial registration: ClinicalTrials.gov Identifier: NCT02672163. Date of registration: 02.02.2016.

Keywords: Atrial appendage; Autologous micrografts; Cell therapy; Coronary artery bypass surgery; Epicardial cell delivery; Heart failure.

Conflict of interest statement

The AADC consortium has been focusing on the cell therapy as a treatment for heart failure for many years. Its knowledge is based on multidisciplinary cooperation between authorities and several previous studies in this field.The trial protocol has been evaluated and approved by the Surgical Ethics Committee of the Hospital District of Helsinki and Uusimaa (number 180/13/03/02/13). Informed and written consent to participate in the study will be obtained by the main researcher from all participants.Informed and written consent for publication will be obtained from all participants.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Preparing the AADC-sheet. (A) The atrial appendage tissue is processed with cell therapy tissue homogenizer (Rigenera-system). (B) The micrografts are secured to extracellular matrix sheet (Cormatrix®) by using a fibrin sealant (Tisseel™). (C) The AADC sheet is placed to the myocardium in the location of infarction scar (animal model). b Administration of therapy during CABG surgery. Figure reproduced from our article by Lampinen et al. (Current Gene Therapy, 2015)
Fig. 2
Fig. 2
Timeline of the study indicating enrollment and follow-up as well as timing of laboratory tests, MRI, and echocardiographic imaging modalities

References

    1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007–2018. doi: 10.1056/NEJMra021498.
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, DK MG, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:143–152. doi: 10.1161/CIR.0b013e318282ab8f.
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, DK MG, Mohler ER, 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292. doi: 10.1161/01.cir.0000441139.02102.80.
    1. Taggart DP. Incomplete revascularization: appropriate and inappropriate. Eur J Cardiothorac Surg. 2012;41(3):542. doi: 10.1093/ejcts/ezr298.
    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, MM MD, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–e215. doi: 10.1161/CIRCULATIONAHA.109.192667.
    1. Villet O, Siltanen A, Pätilä T, Mahar MAA, Vento A, Kankuri E, Harjula A. Advances in cell transplantation therapy for diseased myocardium. Stem Cells Int. 2011; doi: 10.4061/2011/679171.
    1. Garcìa AN, Sanz-Ruiz R, Santos MAF, Fernàndez-Avilès F. “Second-generation” stem cells for cardiac repair. World J Stem Cells. 2015;7:352–367. doi: 10.4252/wjsc.v7.i2.352.
    1. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ. Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol. 2014;11:232–246. doi: 10.1038/nrcardio.2014.9.
    1. Ye J, Yeghiazarians Y. Cardiac stem cell therapy: review of the native cardiac progenitor cells and future direction. J Cardiovasc Pharmacol. 2014;63:85–94. doi: 10.1097/FJC.0b013e318299ebc0.
    1. Donndorf P, Strauer BE, Steinhoff G. Update on cardiac stem cell therapy in heart failure. Curr Opin Cardiol. 2012;27:154–160. doi: 10.1097/HCO.0b013e32834fe969.
    1. Steinhauser ML, Lee RT. Regeneration of the heart. EMBO Mol Med. 2011;3(12):701. doi: 10.1002/emmm.201100175.
    1. Fanton Y, Robic B, Rummens JL, Daniëls A, Windmolders S, Willems L, Jamaer L, Dubois J, Bijnens E, Heuts N, Notelaers K, Paesen R, Ameloot M, Mees U, Bito V, Declercq J, Hensen K, Koninckx R, Hendrikx M. Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: a new tool for cardiac repair after MI. Int J Cardiol. 2015;201:10–19. doi: 10.1016/j.ijcard.2015.07.066.
    1. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden MA, de Kleijn D, Mummery CL, van Veen TA, Sluijter JP, Doevendans PA. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007;1:138–149. doi: 10.1016/j.scr.2008.02.003.
    1. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104:14068–14073. doi: 10.1073/pnas.0706760104.
    1. Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylvén C, Grinnemo KH. Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev. 2010;19:1601–1615. doi: 10.1089/scd.2009.0483.
    1. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R. CD31− but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97:52–61. doi: 10.1161/01.RES.0000173297.53793.fa.
    1. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908. doi: 10.1161/CIRCULATIONAHA.106.655209.
    1. Koninckx R, Daniëls A, Windmolders S, Mees U, Macianskiene R, Mubagwa K, Steels P, Jamaer L, Dubois J, Robic B, Hendrikx M, Rummens JL, Hensen K. The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovasc Res. 2013;97:413–423. doi: 10.1093/cvr/cvs427.
    1. Itzhaki-Alfia A, Leor J, Raanani E, Sternik L, Spiegelstein D, Netser S, Holbova R, Pevsner-Fischer M, Lavee J, Barbash IM. Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation. 2009;120:2559–2566. doi: 10.1161/CIRCULATIONAHA.109.849588.
    1. Mishra R, Vijayan K, Colletti EJ, Harrington DA, Matthiesen TS, Simpson D, Goh SK, Walker BL, Almeida-Porada G, Wang D, Backer CL, Dudley SC, Jr, Wold LE, Kaushal S. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation. 2011;123:364–373. doi: 10.1161/CIRCULATIONAHA.110.971622.
    1. Hamdi H, Furuta A, Bellamy V, Bel A, Puymirat E, Peyrard S, Agbulut O, Menasché P. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg. 2009;87:1196–1203. doi: 10.1016/j.athoracsur.2008.12.074.
    1. Hamdi H, Planat-Benard V, Bel A, Puymirat E, Geha R, Pidial L, Nematalla H, Bellamy V, Bouaziz P, Peyrard S, Casteilla L, Bruneval P, Hagège AA, Agbulut O, Menasché P. Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res. 2011;91:483–491. doi: 10.1093/cvr/cvr099.
    1. Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2014; doi: 10.1002/14651858.CD007888.pub2.
    1. Wen Y, Meng L, Xie J, Ouyang J. Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opin Biol Ther. 2011;11:559–567. doi: 10.1517/14712598.2011.560567.
    1. Kandala J, Upadhyay GA, Pokushalov E, Wu S, Drachman DE, Singh JP. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol. 2013;112:217–225. doi: 10.1016/j.amjcard.2013.03.021.
    1. Tian T, Chen B, Xiao Y, Yang K, Zhou X. Intramyocardial autologous bone marrow cell transplantation for ischemic heart disease: a systematic review and meta-analysis of randomized controlled trials. Atherosclerosis. 2014;233:485–492. doi: 10.1016/j.atherosclerosis.2014.01.027.
    1. Cheng K, Wu F, Cao F. Intramyocardial autologous cell engraftment in patients with ischaemic heart failure: a meta-analysis of randomized controlled trials. Heart Lung Circ. 2013;22:887–894. doi: 10.1016/j.hlc.2013.04.112.
    1. Pätilä T, Lehtinen M, Vento A, Schildt J, Sinisalo J, Laine M, Hämmäinen P, Nihtinen A, Alitalo R, Nikkinen P, Ahonen A, Holmström M, Lauerma K, Pöyhiä R, Kupari M, Kankuri E, Harjula A. Autologous bone marrow mononuclear cell transplantation in ischemic heart failure: a prospective, controlled, randomized, double-blind study of cell transplantation combined with coronary bypass. J Heart Lung Transplant. 2014;33:567–574. doi: 10.1016/j.healun.2014.02.009.
    1. Lehtinen M, Pätilä T, Vento A, Kankuri E, Suojaranta-Ylinen R, Pöyhiä R, Harjula A, Helsinki BMMC Collaboration Prospective, randomized, double-blinded trial of bone marrow cell transplantation combined with coronary surgery—perioperative safety study. Interact Cardiovasc Thorac Surg. 2014;19:990–996. doi: 10.1093/icvts/ivu265.
    1. Lehtinen M, Schildt J, Ahonen A, Nikkinen P, Lauerma K, Sinisalo J, Kankuri E, Vento A, Pätilä T, Harjula A, Helsinki BMMC Collaboration Combining FDG-PET and 99mTc-SPECT to predict functional outcome after coronary artery bypass surgery. Eur Heart J Cardiovasc Imaging. 2015;pii:jev032.
    1. Lehtinen M, Pätilä T, Kankuri E, Lauerma K, Sinisalo J, Laine M, Kupari M, Vento A, Harjula A, Helsinki BMMC Collaboration Intramyocardial bone marrow mononuclear cell transplantation in ischemic heart failure: long-term follow-up. J Heart Lung Transplant. 2015;34:899–905. doi: 10.1016/j.healun.2015.01.989.
    1. Boldt A, Wetzel U, Lauschke J, Weigl J, Gummert J, Hindricks G, Kottkamp H, Dhein S. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004;90:400–405. doi: 10.1136/hrt.2003.015347.
    1. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25:543–567. doi: 10.1210/er.2003-0012.
    1. Pulinilkunnil T, Rodrigues B. Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease. Cardiovasc Res. 2006;69:329–340. doi: 10.1016/j.cardiores.2005.09.017.
    1. Trovato L, Monti M, Del Fante C, Cervio M, Lampinen M, Ambrosio L, Redi CA, Perotti C, Kankuri E, Ambrosio G, Rodriguez Y, Baena R, Pirozzi G, Graziano A. A new medical device Rigeneracons allows to obtain viable micro-grafts from mechanical disaggregation of human tissues. J Cell Physiol. 2015;230:2299–2303. doi: 10.1002/jcp.24973.
    1. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson. 2008;10:35. doi: 10.1186/1532-429X-10-35.
    1. Fisher SA, Doree C, Mathur A, Martin-Rendon E. Meta-analysis of cell therapy trials for patient with heart failure. Circ Res. 2015;116:1361–1377. doi: 10.1161/CIRCRESAHA.116.304386.
    1. Menasche P. Cardiac cell therapy: lessons from clinical trials. J Mol Cell Cardiol. 2011;50:258–265. doi: 10.1016/j.yjmcc.2010.06.010.
    1. Pätilä T, Miyagawa S, Imanishi Y, Fukushima S, Siltanen A, Mervaala E, Kankuri E, Harjula A, Sawa Y. Comparison of arrhythmogenicity and proinflammatory activity induced by intramyocardial or epicardial myoblast sheet delivery in a rat model of ischemic heart failure. PLoS One. 2015;10:e0123963. doi: 10.1371/journal.pone.0123963.
    1. T N, Shintani Y, Ikebe C, Kaneko M, Harada N, Tshuma N, Takahashi K, Campbell NG, Coppen SR, Yashiro K, Sawa Y, Suzuki K. The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to the heart with enhanced therapeutic effects. Int J Cardiol. 2013;168:261–269. doi: 10.1016/j.ijcard.2012.09.081.
    1. Liu Y, Tse HF. The proarrhythmic risk of cell therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther. 2011;9:1593–1601. doi: 10.1586/erc.11.171.
    1. Kwon DH, Halley CM, Carrigan TP, Zysek V, Popovic ZB, Setser R, Schoenhagen P, Starling RC, Flamm SD, Desai MY. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function: a delayed hyperenhancement cardiac magnetic resonance study. JACC Cardiovasc Imaging. 2009;2:34–44. doi: 10.1016/j.jcmg.2008.09.010.
    1. P B, Abdel-Aty H, Zacharzowsky U, Bohl S, Schwenke C, van der Geest RJ, Dietz R, Schirdewan A, Schulz-Menger J. Prediction of life-threatening arrhythmic events in patients with chronic myocardial infarction by contrast-enhanced CMR. JACC Cardiovasc Imaging. 2011;4:871–879. doi: 10.1016/j.jcmg.2011.04.014.
    1. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, Kadish AH, Goldberger JJ. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol. 2005;45:1104–1108. doi: 10.1016/j.jacc.2004.12.057.
    1. Hudson W, Collins MC, de Freitas D, Sun YS, Muller-Borer B, Kypson AP. Beating and arrested intramyocardial injections are associated with significant mechanical loss: implications for cardiac cell transplantation. J Surg Res. 2007;142:263–267. doi: 10.1016/j.jss.2007.03.021.
    1. Smets FN, Chen Y, Wang LJ, Soriano HE. Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol Genet Metab. 2002;75:344–352. doi: 10.1016/S1096-7192(02)00004-5.
    1. Kankuri E, Harjula A. Cells and gene therapy—“do you like green eggs and ham?”. Curr Gene Ther. 2016;16:3–4. doi: 10.2174/1566523216999160114150058.
    1. Lampinen M, Vento A, Laurikka J, Nystedt J, Mervaala E, Harjula A, Kankuri E. Rational autologous cell sources for therapy of heart failure—vehicles and targets for gene and RNA therapies. Curr Gene Ther. 2016;16:21–33. doi: 10.2174/1566523216666160104141809.
    1. Kankuri E, Lampinen M, Harjula A. Cellular cardiomyoplasty—challenges of a new era. Curr Tissue Eng. 2015;4:41–46. doi: 10.2174/2211542004666150305235238.
    1. Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8:30–41. doi: 10.1038/nrcardio.2010.165.

Source: PubMed

3
Subscribe