Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic-Anaerobic Transition Zones: A Systematic Review and Meta-Analysis

Álvaro Huerta Ojeda, Camila Tapia Cerda, María Fernanda Poblete Salvatierra, Guillermo Barahona-Fuentes, Carlos Jorquera Aguilera, Álvaro Huerta Ojeda, Camila Tapia Cerda, María Fernanda Poblete Salvatierra, Guillermo Barahona-Fuentes, Carlos Jorquera Aguilera

Abstract

Beta-alanine supplementation (BA) has a positive impact on physical performance. However, evidence showing a benefit of this amino acid in aerobic-anaerobic transition zones is scarce and the results controversial. The aim of this systematic review and meta-analysis is to analyze the effects of BA supplementation on physical performance in aerobic-anaerobic transition zones. At the same time, the effect of different dosages and durations of BA supplementation were identified. The search was designed in accordance with the PRISMA® guidelines for systematic reviews and meta-analyses and performed in Web of Science (WOS), Scopus, SPORTDiscus, PubMed, and MEDLINE between 2010 and 2020. The methodological quality and risk of bias were evaluated with the Cochrane Collaboration tool. The main variables were the Time Trial Test (TTT) and Time to Exhaustion (TTE) tests, the latter separated into the Limited Time Test (LTT) and Limited Distance Test (LDT). The analysis was carried out with a pooled standardized mean difference (SMD) through Hedges' g test (95% CI). Nineteen studies were included in the systematic review and meta-analysis, revealing a small effect for time in the TTT (SMD, -0.36; 95% CI, -0.87-0.16; I2 = 59%; p = 0.010), a small effect for LTT (SMD, 0.25; 95% CI, -0.01-0.51; I2 = 0%; p = 0.53), and a large effect for LDT (SMD, 4.27; 95% CI, -0.25-8.79; I2 = 94%; p = 0.00001). BA supplementation showed small effects on physical performance in aerobic-anaerobic transition zones. Evidence on acute supplementation is scarce (one study); therefore, exploration of acute supplementation with different dosages and formats on physical performance in aerobic-anaerobic transition zones is needed.

Keywords: aerobic–anaerobic transition zone; beta-alanine; ergogenic aid; physical performance.

Conflict of interest statement

The authors declare no conflict of interests.

Figures

Figure 1
Figure 1
Standard error for Times Trial Test (a), Limited Time Test (b), and Limited Distance Test (c). SE: standard error; SMD: standardized median difference.
Figure 2
Figure 2
Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies.
Figure 3
Figure 3
Risk of bias summary: review authors’ judgements about each risk of bias item for each included study.
Figure 4
Figure 4
Studies included in the systematic review and meta-analysis.
Figure 5
Figure 5
Forest plot comparing the effects of BA supplementation on Time Trial Tests. BA: beta-alanine; PL: placebo.
Figure 6
Figure 6
Forest plot comparing the effect of BA on Limited Time Test. BA: beta-alanine; PL: placebo.
Figure 7
Figure 7
Forest plot comparing the effect of BA on Limited Distance Test. BA: beta-alanine; PL: placebo.

References

    1. Santesteban V., Ibánez J. Ayudas ergogénicas en el deporte. Nutr. Hosp. 2017;34:204–215. doi: 10.20960/nh.997.
    1. Derave W., Tipton K.D. Dietary supplements for aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014;24:437–449. doi: 10.1123/ijsnem.2014-0017.
    1. Frączek B., Warzecha M., Tyrała F., Pięta A. Prevalence of the use of effective ergogenic aids among professional athletes. Rocz. Panstw. Zakl. Hig. 2016;67:271–278.
    1. López-Samanes Á., Moreno V., Kovacs M.S., Pallarés J.G., Mora R., Ortega J. Use of nutritional supplements and ergogenic aids in professional tennis players. Nutr. Hosp. 2017;34:1463–1468.
    1. Kresta J.Y., Oliver J.M., Jagim A.R., Fluckey J., Riechman S., Kelly K., Meininger C., Mertens-Talcott S.U., Rasmussen C., Kreider R.B. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2014;11:55. doi: 10.1186/s12970-014-0055-6.
    1. Galdames S., Huerta Á., Pastene A. Efecto de la suplementación aguda con bicarbonato sódico sobre el rendimiento en la cancha con obstáculos en pentatletas militares profesionales. Arch. Med. del Deport. 2020 in press.
    1. Maughan R.J., Burke L.M., Dvorak J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H., et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018;28:104–125. doi: 10.1123/ijsnem.2018-0020.
    1. Jordan T., Lukaszuk J., Misic M., Umoren J. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. J. Int. Soc. Sports Nutr. 2010;7:20. doi: 10.1186/1550-2783-7-20.
    1. Trexler E.T., Smith-Ryan A.E., Stout J.R., Hoffman J.R., Wilborn C.D., Sale C., Kreider R.B., Jäger R., Earnest C.P., Bannock L., et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015;12 doi: 10.1186/s12970-015-0090-y.
    1. Stegen S., Bex T., Vervaet C., Vanhee L., Achten E., Derave W. β-Alanine dose for maintaining moderately elevated muscle carnosine levels. Med. Sci. Sports Exerc. 2014;46:1426–1432. doi: 10.1249/MSS.0000000000000248.
    1. Bex T., Chung W., Baguet A., Achten E., Derave W. Exercise Training and Beta-Alanine-Induced Muscle Carnosine Loading. Front. Nutr. 2015;2:13. doi: 10.3389/fnut.2015.00013.
    1. Peeling P., Binnie M.J., Goods P.S.R., Sim M., Burke L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:178–187. doi: 10.1123/ijsnem.2017-0343.
    1. Blancquaert L., Everaert I., Missinne M., Baguet A., Stegen S., Volkaert A., Petrovic M., Vervaet C., Achten E., De Maeyer M., et al. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med. Sci. Sports Exerc. 2017;49:602–609. doi: 10.1249/MSS.0000000000001213.
    1. Jagim A.R., Wright G.A., Brice A.G. Effects of Beta Alanine supplementation on sprint endurance. J. Strength Cond. Res. 2013;27:526–532. doi: 10.1519/JSC.0b013e318256bedc.
    1. Harris R.C., Wise J.A., Price K.A., Kim H.J., Kim C.K., Sale C. Determinants of muscle carnosine content. Amino Acids. 2012;43:5–12. doi: 10.1007/s00726-012-1233-y.
    1. Artioli G., Gualano B., Smith A., Stout J., Lancha A.H. Role of β-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010;42:1162–1173. doi: 10.1249/MSS.0b013e3181c74e38.
    1. Huerta Á., Contreras-Montilla O., Galdames S., Jorquera-Aguilera C., Fuentes-Kloss R., Guisado-Barrilao R. Efectos de la suplementación con beta alanina sobre una prueba de tiempo límite a velocidad aeróbica máxima en atletas de resistencia. Nutr. Hosp. 2019;36:698–705. doi: 10.20960/nh.02310.
    1. Jagim A.R., Harty P.S., Camic C.L. Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients. 2019;11:254. doi: 10.3390/nu11020254.
    1. Osnes J.B., Hermansen L. Acid-base balance after maximal exercise of short duration. J. Appl. Physiol. 1972;32:59–63. doi: 10.1152/jappl.1972.32.1.59.
    1. Stout J.R., Cramer J.T., Zoeller R.F., Torok D., Costa P., Hoffman J.R., Harris R.C., O’Kroy J. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32:381–386. doi: 10.1007/s00726-006-0474-z.
    1. Smith-Ryan A.E., Fukuda D.H., Stout J.R., Kendall K.L. High velocity intermittent running: Effects of Beta alanine Supplementation. J. Strength Cond. Res. 2012;26:2798–2805. doi: 10.1519/JSC.0b013e318267922b.
    1. Smith A.E., Stout J.R., Kendall K.L., Fukuda D.H., Cramer J.T. Exercise-induced oxidative stress: The effects of β-alanine supplementation in women. Amino Acids. 2012;43:77–90. doi: 10.1007/s00726-011-1158-x.
    1. Décombaz J., Beaumont M., Vuichoud J., Bouisset F., Stellingwerff T. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43:67–76. doi: 10.1007/s00726-011-1169-7.
    1. Domínguez R., Lougedo J.H., Maté-Muñoz J.L., Garnacho-Castaño M.V. Efectos de la suplementación con ß-alanina sobre el rendimiento deportivo. Nutr. Hosp. 2015;31:155–169. doi: 10.3305/nh.2015.31.1.7517.
    1. Kindermann W., Simon G., Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur. J. Appl. Physiol. 1979;42:25–34. doi: 10.1007/BF00421101.
    1. Faude O., Kindermann W., Meyer T. Lactate threshold concepts: How valid are they? Sports Med. 2009;39:469–490. doi: 10.2165/00007256-200939060-00003.
    1. Wilson J.M., Wilson G.J., Zourdos M.C., Smith A.E., Stout J. Beta-alanine supplementation improves aerobic and anaerobic indices of performance. Strength Cond. J. 2010;32:71–78. doi: 10.1519/SSC.0b013e3181c20875.
    1. Beasley L., Smith L., Antonio J., Gordon D., Johnstone J., Roberts J. The effect of two β-alanine dosing strategies on 30-minute rowing performance: A randomized, controlled trial. J. Int. Soc. Sports Nutr. 2018;15:1–11. doi: 10.1186/s12970-018-0266-3.
    1. Bellinger P.M., Minahan C.L. The effect of β-alanine supplementation on cycling time trials of different length. Eur. J. Sport Sci. 2016;16:829–836. doi: 10.1080/17461391.2015.1120782.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Altman D., Antes G., Atkins D., Barbour V., Barrowman N., Berlin J.A., et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6 doi: 10.1371/journal.pmed.1000097.
    1. Huerta Á., Dominguez A., Barahona-Fuentes G. The effect of supplementation with L-arginine and L-citrulline on physical performance: A systematic review. Nutr. Hosp. 2019;36:1389–1402. doi: 10.20960/nh.02478.
    1. Chicharro J., Vicente D., Cancino J. Fisiología del Entrenamiento Aeróbico. Una Visión Integrada. 1st ed. Editorial Medicap Panamericana; Barcelona, España: 2013.
    1. Berthon P., Fellmann N., Bedu M., Beaune B., Dabonneville M., Coudert J., Chamoux A. A 5-min running field test as a measurement of maximal aerobic velocity. Eur. J. Appl. Physiol. Occup. Physiol. 1997;75:233–238. doi: 10.1007/s004210050153.
    1. Tong T.K., Fu F.H., Chow B.C. Reliability of a 5-min running field test and its accuracy in VO2max evaluation. J. Sports Med. Phys. Fitness. 2001;41:318.
    1. Chung W., Baguet A., Bex T., Bishop D.J., Derave W. Doubling of muscle carnosine concentration does not improve laboratory 1-Hr cycling time-trial performance. Int. J. Sport Nutr. Exerc. Metab. 2014;24:315–324. doi: 10.1123/ijsnem.2013-0125.
    1. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health. 1990;16:55–58. doi: 10.5271/sjweh.1815.
    1. Egger M., Smith G.D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Higgins J., Green S. In: Cochrane Handbook for Systematic Reviews of Interventions. London U., editor. Cochrane; Chichester, UK: 2011. Version 5.
    1. Hedges L. V Distribution theory for Glass’s estimator of e ect size and related estimators. J. Educ. Stat. 1981;6:107–128. doi: 10.3102/10769986006002107.
    1. Cohen J. In: Statistical Power Analysis for the Behavioral Sciences. Cambridge A.P., editor. Associated Press; Cambridge, MA, USA: 2013.
    1. Higgins J., Thompson S., Deeks J., Altman D. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. Baguet A., Bourgois J., Vanhee L., Achten E., Derave W. Important role of muscle carnosine in rowing performance. J. Appl. Physiol. 2010;109:1096–1101. doi: 10.1152/japplphysiol.00141.2010.
    1. Bellinger P.M., Minahan C.L. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance. Appl. Physiol. Nutr. Metab. 2016;41:864–871. doi: 10.1139/apnm-2016-0095.
    1. Bellinger P.M., Minahan C.L. Additive benefits of β-Alanine supplementation and sprint-interval training. Med. Sci. Sports Exerc. 2016;48:2417–2425. doi: 10.1249/MSS.0000000000001050.
    1. Cochran A.J.R., Percival M.E., Thompson S., Gillen J.B., MacInnis M.J., Potter M.A., Tarnopolsky M.A., Gibala M.J. β-Alanine supplementation does not augment the skeletal muscle adaptive response to 6 weeks of sprint interval training. Int. J. Sport Nutr. Exerc. Metab. 2015;25:541–549. doi: 10.1123/ijsnem.2015-0046.
    1. Ducker K.J., Dawson B., Wallman K.E. Effect of beta-alanine supplementation on 2000-m rowing-ergometer performance. Int. J. Sport Nutr. Exerc. Metab. 2013;23:336–343. doi: 10.1123/ijsnem.23.4.336.
    1. Hobson R.M., Harris R.C., Martin D., Smith P., Macklin B., Gualano B., Sale C. Effect of β-alanine, with and without sodium bicarbonate on 2000 m Rowing Performance. Int. J. Sport Nutr. Exerc. Metab. 2013;23:480–487. doi: 10.1123/ijsnem.23.5.480.
    1. Santana J.O., Freitas M.C., dos Santos D.M., Rossi F.E., Lira F.S., Rosa-Neto J.C., Caperuto E.C. Beta-alanine supplementation improved 10-km running time trial in physically active adults. Front. Physiol. 2018;9:1105. doi: 10.3389/fphys.2018.01105.
    1. Furst T., Massaro A., Miller C., Williams B.T., LaMacchia Z.M., Horvath P.J. β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals. J. Int. Soc. Sports Nutr. 2018;15:32. doi: 10.1186/s12970-018-0238-7.
    1. Ghiasvand R., Askari G., Malekzadeh J., Hajishafiee M., Daneshvar P., Akbari F., Bahreynian M. Effects of six weeks of β-alanine administration on VO2max, time to exhaustion and lactate concentrations in physical education students. Int. J. Prev. Med. 2012;3:559.
    1. Greer B.K., Katalinas M.E., Shaholli D.M., Gallo P.M. β-alanine supplementation fails to increase peak aerobic power or ventilatory threshold in aerobically trained males. J. Diet. Suppl. 2014;13:165–170. doi: 10.3109/19390211.2014.965867.
    1. Outlaw J.J., Smith-Ryan A.E., Buckley A.L., Urbina S.L., Hayward S., Wingfield H.L., Campbell B., Foster C., Taylor L.W., Wilborn C.D. Effects of β-alanine on body composition and performance measures in collegiate women. J. Strenght Cond. Res. 2016;30:2627–2637. doi: 10.1519/JSC.0000000000000665.
    1. Smith-Ryan A.E., Woessner M.N., Melvin M.N., Wingfield H.L., Hackney A.C. The effects of beta-alanine supplementation on physical working capacity at heart rate threshold. Clin. Physiol. Funct. Imaging. 2014;34:397–404. doi: 10.1111/cpf.12111.
    1. Harris R.C., Tallon M.J., Dunnett M., Boobis L., Coakley J., Kim H.J., Fallowfield J.L., Hill C.A., Sale C., Wise J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30:279–289. doi: 10.1007/s00726-006-0299-9.
    1. Asatoor A.M., Bandoh J.K., Lant A.F., Milne M.D., Navab F. Intestinal absorption of carnosine and its constituent amino acids in man. Gut. 1970;11:250–254. doi: 10.1136/gut.11.3.250.
    1. Kerksick C.M., Wilborn C.D., Roberts M.D., Smith-Ryan A., Kleiner S.M., Jäger R., Collins R., Cooke M., Davis J.N., Galvan E., et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018;15:38. doi: 10.1186/s12970-018-0242-y.
    1. Dutka T.L., Lamboley C.R., McKenna M.J., Murphy R.M., Lamb G.D. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. J. Appl. Physiol. 2012;112:728–736. doi: 10.1152/japplphysiol.01331.2011.
    1. Invernizzi P.L., Benedini S., Saronni S., Merati G., Bosio A. The acute administration of carnosine and beta-alanine does not improve running anaerobic performance and has no effect on the metabolic response to exercise. Adv. Phys. Educ. 2013;03:169–174. doi: 10.4236/ape.2013.34028.
    1. Saunders B., Elliott-Sale K., Artioli G.G., Swinton P.A., Dolan E., Roschel H., Sale C., Gualano B. β-Alanine supplementation to improve exercise capacity and performance: A systematic review and meta-Analysis. Br. J. Sports Med. 2017;51:658–669. doi: 10.1136/bjsports-2016-096396.
    1. Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010;40:247–263. doi: 10.2165/11530310-000000000-00000.
    1. Quesnele J.J., Laframboise M.A., Wong J.J., Kim P., Wells G.D. The effects of beta-alanine supplementation on performance: A systematic review of the literature. Int. J. Sport Nutr. Exerc. Metab. 2014;24:14–27. doi: 10.1123/ijsnem.2013-0007.
    1. Gross M., Boesch C., Bolliger C.S., Norman B., Gustafsson T., Hoppeler H., Vogt M. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur. J. Appl. Physiol. 2014;114:221–234. doi: 10.1007/s00421-013-2767-8.
    1. Ekblom B., Golobarg A.N. The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiol. Scand. 1971;83:399–406. doi: 10.1111/j.1748-1716.1971.tb05093.x.
    1. Bountra C., Vaughan-Jones R. Effect of intracellular and extracellullar pH on contraction in isolated, mammalian cardiac muscle. J. Physiol. 1989;418:163–187. doi: 10.1113/jphysiol.1989.sp017833.

Source: PubMed

3
Subscribe