Radial Artery Occlusion After Transradial Interventions: A Systematic Review and Meta-Analysis

Muhammad Rashid, Chun Shing Kwok, Samir Pancholy, Sanjay Chugh, Sasko A Kedev, Ivo Bernat, Karim Ratib, Adrian Large, Doug Fraser, James Nolan, Mamas A Mamas, Muhammad Rashid, Chun Shing Kwok, Samir Pancholy, Sanjay Chugh, Sasko A Kedev, Ivo Bernat, Karim Ratib, Adrian Large, Doug Fraser, James Nolan, Mamas A Mamas

Abstract

Background: Radial artery occlusion (RAO) may occur posttransradial intervention and limits the radial artery as a future access site, thus precluding its use as an arterial conduit. In this study, we investigate the incidence and factors influencing the RAO in the current literature.

Methods and results: We searched MEDLINE and EMBASE for studies of RAO in transradial access. Relevant studies were identified and data were extracted. Data were synthesized by meta-analysis, quantitative pooling, graphical representation, or by narrative synthesis. A total of 66 studies with 31 345 participants were included in the analysis. Incident RAO ranged between <1% and 33% and varied with timing of assessment of radial artery patency (incidence of RAO within 24 hours was 7.7%, which decreased to 5.5% at >1 week follow-up). The most efficacious measure in reducing RAO was higher dose of heparin, because lower doses of heparin were associated with increased RAO (risk ratio 0.36, 95% CI 0.17-0.76), whereas shorter compression times also reduced RAO (risk ratio 0.28, 95% CI 0.05-1.50). Several factors were found to be associated with RAO including age, sex, sheath size, and diameter of radial artery, but these factors were not consistent across all studies.

Conclusions: RAO is a common complication of transradial access. Maintenance of radial patency should be an integral part of all procedures undertaken through the radial approach. High-dose heparin along with shorter compression times and patent hemostasis is recommended in reducing RAO.

Keywords: radial artery occlusion; transradial catheterization or access; vascular complications.

© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Flow diagram of study selection.
Figure 2
Figure 2
Incidence of radial artery occlusion (RAO) at shortest follow‐up time for each study.
Figure 3
Figure 3
Incidence of radial artery occlusion (RAO) by follow‐up time. (A) Percentage of particpants with ≤24 hr RAO; (B) percentage of particpants with 1‐7 days RAO; (C) percentage of participants with >7 days RAO.
Figure 4
Figure 4
Meta‐analysis of radial artery occlusion (RAO) by different interventions. The comparison of catheter size is shown in (A), High versus low dose heparin in (B), Duration of compression in (C). M‐H indicates Mantel‐Haenszel.
Figure 5
Figure 5
Pooled incidence of radial artery occlusion (RAO) by catheter size. A, Sheathless catheters. B, Conventional catheter system.

References

    1. Anderson SG, Ratib K, Myint PK, Keavney B, Kwok CS, Zaman A, Ludman PF, de Belder MA, Nolan J, Mamas MA. Impact of age on access site‐related outcomes in 469,983 percutaneous coronary intervention procedures: insights from the British Cardiovascular Intervention Society. Catheter Cardiovasc Interv. 2015;86:965–972.
    1. Ratib K, Mamas MA, Anderson SG, Bhatia G, Routledge H, De Belder M, Ludman PF, Fraser D, Nolan J. Access site practice and procedural outcomes in relation to clinical presentation in 439,947 patients undergoing percutaneous coronary intervention in the United Kingdom. JACC Cardiovasc Interv. 2015;8:20–29.
    1. Mamas MA, Anderson SG, Carr M, Ratib K, Buchan I, Sirker A, Fraser DG, Neyses L, Hildick‐Smith D, de Belder M, Ludman PF, Nolan J. Baseline bleeding risk and arterial access site practice in relation to procedural outcomes following percutaneous coronary intervention. J Am Coll Cardiol. 2014;64:1554–1564.
    1. Ratib K, Mamas MA, Routledge HC, Ludman PF, Fraser DG, Nolan J. Influence of access site choice on incidence of neurologic complications after percutaneous coronary intervention. Am Heart J. 2013;165:317–324.
    1. Bertrand OF, Rao SV, Pancholy S, Jolly SS, Rodés‐Cabau J, Larose E, Costerousse O, Hamon M, Mann T. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. JACC Cardiovasc Interv. 2010;3:1022–1031.
    1. Rao SV, Cohen MG, Kandzari DE, Bertrand OF, Gilchrist IC. The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions. J Am Coll Cardiol. 2010;55:2187–2195.
    1. Feldman DN, Swaminathan RV, Kaltenbach LA, Baklanov DV, Kim LK, Wong SC, Minutello RM, Messenger JC, Moussa I, Garratt KN, Piana RN, Hillegass WB, Cohen MG, Gilchrist IC, Rao SV. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the National Cardiovascular Data Registry (2007–2012). Circulation. 2013;127:2295–2306.
    1. Rao SV, Ou FS, Wang TY, Roe MT, Brindis R, Rumsfeld JS, Peterson ED. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2008;1:379–386.
    1. Mamas MA, Anderson SG, Ratib K, Routledge H, Neyses L, Fraser DG, Buchan I, de Belder MA, Ludman P, Nolan J. Arterial access site utilization in cardiogenic shock in the United Kingdom: is radial access feasible? Am Heart J. 2014;167:900–908.
    1. Bertrand OF, Bernat I. Radial artery occlusion: still the Achille's heel of transradial approach or is it? Coron Artery Dis. 2015;26:97–98.
    1. Cooper CJ, El‐Shiekh RA, Cohen DJ, Blasesing L, Burket MW, Basu A, Moore JA. Effect of transradial access on quality of life and cost of cardiac catheterization: a randomized comparison. Am Heart J. 1999;138:430–436.
    1. Mitchell MD, Hong JA, Lee BY, Umscheid CA, Bartsch SM, Don CW. Systematic review and cost‐benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012;5:454–462.
    1. Mamas MA, Fraser DG, Ratib K, Fath‐Ordoubadi F, El‐Omar M, Nolan J, Neyses L. Minimising radial injury: prevention is better than cure. EuroIntervention. 2014;10:824–832.
    1. Abdelaal E, Brousseau‐Provencher C, Montminy S, Plourde G, MacHaalany J, Bataille Y, Molin P, Déry JP, Barbeau G, Roy L, Larose É, De Larochellière R, Nguyen CM, Proulx G, Costerousse O, Bertrand OF. Risk score, causes, and clinical impact of failure of transradial approach for percutaneous coronary interventions. JACC Cardiovasc Interv. 2013;6:1129–1137.
    1. Stella PR, Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. Incidence and outcome of radial artery occlusion following transradial artery coronary angioplasty. Cathet Cardiovasc Diagn. 1997;40:156–158.
    1. Sanmartin M, Gomez M, Rumoroso JR, Sadaba M, Martinez M, Baz JA, Iniquez A. Interruption of blood flow during compression and radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv. 2007;70:185–189.
    1. Pancholy S, Coppola J, Patel T, Roke‐Thomas M. Prevention of radial artery occlusion‐patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72:335–340.
    1. Cubero JM, Lombardo J, Pedrosa C, Diaz‐Bejarano D, Sanchez B, Fernandez V, Gomez C, Vazquez R, Molano FJ, Pastor LF. Radial compression guided by mean artery pressure versus standard compression with a pneumatic device (RACOMAP). Catheter Cardiovasc Interv. 2009;73:467–472.
    1. Kumar Chugh S, Chugh S, Chugh Y, Rao SV. Feasibility and utility of pre‐procedural ultrasound imaging of the arm to facilitate transradial coronary diagnostic and interventional procedures (PRIMAFACIE‐TRI). Catheter Cardiovasc Interv. 2013;82:64–73.
    1. Garg N, Madan BK, Khanna R, Sinha A, Kapoor A, Tewari S, Kumar S, Goel PK. Incidence and predictors of radial artery occlusion after transradial coronary angioplasty: Doppler‐guided follow‐up study. J Invasive Cardiol. 2015;27:106–112.
    1. Saito S, Ikei H, Hosokawa G, Tanaka S. Influence of the ratio between radial artery inner diameter and sheath outer diameter on radial artery flow after transradial coronary intervention. Catheter Cardiovasc Interv. 1999;46:173–178.
    1. Pancholy SB. Comparison of the effect of intra‐arterial versus intravenous heparin on radial artery occlusion after transradial catheterization. Am J Cardiol. 2009;104:1083–1085.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta‐analyses. Br Med J. 2003;327:557–560.
    1. Kwok CS, Holland R, Gibbs S. Efficacy of topical treatments for cutaneous warts: a meta‐analysis and pooled analysis of randomized controlled trials. Br J Dermatol. 2011;165:233–246.
    1. Abboud J, Garyali S, Kalayeh N, Botros A, Ansari M, Imran H. A single center experience with radial artery occlusion and spasm after a minor change in the protocol for administration of the radial artery cocktail. Catheter Cardiovasc Interv. 2013;81:S171.
    1. Ahmed I, Boruah P, Sharma P, Pancholy S. Radial artery occlusion after transradial catheterization in patients receiving warfarin anticoagulation. Catheter Cardiovasc Interv. 2012;79:S103.
    1. Aminian A, Dolatabadi D, Lefebvre P, Zimmerman R, Brunner P, Michalakis G, Lalmand J. Initial experience with the Glidesheath Slender for transradial coronary angiography and intervention: a feasibility study with prospective radial ultrasound follow‐up. Catheter Cardiovasc Interv. 2014;84:436–442.
    1. Ang CY, Dinh HL, Lontoc AN, Liu B, Lim V, Lim ST, Koh TH, Chiam PT. Comparison of slender (6.5 French sheathless) guiding catheters versus 5 French guiding catheters for slender transradial coronary intervention. J Am Coll Cardiol. 2013;62:B96–B97.
    1. Aykan AC, Gokdeniz T, Gul I, Kalaycioglu E, Cetin M, Hatem E, Karabay CY, Guler A, Aykan DA, Yildiz M. Comparison of low dose versus standard dose heparin for radial approach in elective coronary angiography? Eur Heart J. 2014;35:860.
    1. Bernat I, Bertrand OF, Rokyta R, Kacer M, Pesek J, Koza J, Smid M, Bruhova H, Sterbakova G, Stepankova L, Costerousse O. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. Am J Cardiol. 2011;107:1698–1701.
    1. Buturak A, Gorgulu S, Norgaz T, Voyvoda N, Sahingoz Y, Degirmencioglu A, Dagdelen S. The long‐term incidence and predictors of radial artery occlusion following a transradial coronary procedure. Cardiol J. 2014;21:350–356.
    1. Caussin C, Gharbi M, Durier C, Ghostine S, Pesenti‐Rossi D, Rahal S, Brenot P, Barri M, Durup F, Lancelin B. Reduction in spasm with a long hydrophilic transradial sheath. Catheter Cardiovasc Interv. 2010;76:668–672.
    1. Chiam TP, Liu B, Wong AS, Wong PE, Lim ST, Koh TH, Lim VY. Comparison of novel slender 6.5 French (‘Virtual 4 French’) sheathless guiding catheter vs. 5 French guiding catheter for transradial coronary intervention. EuroIntervention. 2011;7:M92.
    1. Chou MT, Chiang CY. Effect of short‐time compression with Kaolin‐filled pad on radial artery occlusion after transradial access catheterization. Glob Heart. 2014;9:e207.
    1. Dangoisse V, Guedes A, Chenu P, Jamart J, Gabriel L, Marchandise B, Jourdan J, Albert C, Dury C, Schroeder E. Pulse oximetry versus Doppler for patency evaluation at 24 h and 1 month after transradial approach. Results of the randomized CRASOC (compression of radial arteries without occlusion) study. J Invasive Cardiol. 2012;24/9:1042–3931.
    1. Dahm JB, Vogelgesang D, Hummel A, Staudt A, Völzke H, Felix SB. A randomized trial of 5 vs. 6 French transradial percutaneous coronary interventions. Catheter Cardiovasc Interv. 2002;57:172–176.
    1. Edris A, Gordin J, Sallam T, Meymandi S, Traina M. Patent hemostasis rapid deflation technique to reduce radial artery occlusion. J Am Coll Cardiol. 2014;64:B241.
    1. Feray H, Izgi C, Cetiner D, Men EE, Saltan Y, Baltay A, Kahraman R. Effectiveness of enoxaparin for prevention of radial artery occlusion after transradial cardiac catheterization. J Thromb Thrombolysis. 2010;29:322–325.
    1. Gadkar H, D'Souza R. Feasibility and safety of a novel sheathless sheathless system during routine percutaneous transradial coronary angiography. EuroIntervention. 2011;7:M191.
    1. Hadi HM, D'Souza S, Mamas M, Hamid T, Fraser DG. Sheathless guiding catheter; a new tool in transradial coronary intervention—a feasibility study. Can J Cardiol. 2010;26:57D.
    1. Hahalis G, Xanthopoulou I, Tsigkas G, Christodoulou I, Almpanis G, Grapsas N, Koniari I, Christopoulou G, Davlouros P, Alexopoulos D. Randomized comparison of low (2500 IU) versus standard (5000 IU) heparin dose for prevention of forearm artery occlusion after coronary angiography. J Am Coll Cardiol. 2013;62:B94.
    1. Honda T, Fujimoto K, Miyao Y, Koga H, Hirata Y. Access site‐related complications after transradial catheterization can be reduced with smaller sheath size and statins. Cardiovasc Interv Ther. 2012;27:174–180.
    1. Kindel M, Ruppel R. Hydrophilic‐coated sheaths increase the success rate of transradial coronary procedures and reduce patient discomfort but do not reduce the occlusion rate: randomized single‐blind comparison of coated vs. non‐coated sheaths. Clin Res Cardiol. 2008;97:609–614.
    1. Kinoshita N, Ota K, Yamada T, Miyai N, Nakamura R, Matsumoto K. Useful of the sheathless guide catheter during routine transradial percutaneous coronary intervention. Am J Cardiol. 2011;107:45A.
    1. Kwan TW, Cherukuri S, Huang Y, Pancholy S, Daggubati R, Liou M, Coppola J, Saito S. Feasibility and safety of 7F sheathless guiding catheter during transradial coronary intervention. Catheter Cardiovasc Interv. 2012;80:274–280.
    1. Lala M, Talati S, Diwan R, Huang Y, Kwan T. Sheath size correlation to future radial artery occlusion (RAO). Catheter Cardiovasc Interv. 2014;83:S2–S3.
    1. Lee WC, Chen HC, Fang CY, Cheng CI, Yang CH, Chen CJ, Hang CL, Yip HK, Wu CJ, Fang HY. Incidence and predictors of radial artery occlusion after using sheathless standard guiding catheters in complex coronary intervention and carotid artery stenting by trans‐radial approach. Exp Clin Cardiol. 2014;20:1305–1327.
    1. Levin D, Adawi S, Halon D, Rubinshtein R, Jaffe R. Abstract POS007: Long‐term radial artery patency following transradial coronary catheterisation via a 7F‐sheath. EuroIntervention. 2014;Euro 14A:POS007–POS007.
    1. Lisowska A, Knapp M, Tycinska A, Sielatycki P, Kralisz P, Musial W. Radial access during percutaneous interventions in patients with acute coronary syndromes: Should we routinely monitor radial artery patency by ultrasonography promptly after the procedure and in long term observation? Int J Cardiovasc Imaging. 2015;31:31–36.
    1. De Sa BJL, Barros LFT, Brandao SCS, Victor EG. Interference of reprocessed introducers in radial artery occlusion after cardiac catheterization. Rev Bras Cardiol Invasiva. 2013;21:270–275.
    1. Markovic S, Imhof A, Kunze M, Rottbauer W, Wohrle J. Standardized radial approach reduces access site complications: a prospective observational registry. Coron Artery Dis. 2014;26:56–59.
    1. Mamas M, D'Souza S, Hendry C, Ali R, Iles‐Smith H, Palmer K, El‐Omar M, Fath‐Ordoubadi F, Neyses L, Fraser DG. Use of the sheathless guide catheter during routine transradial percutaneous coronary intervention: a feasibility study. Catheter Cardiovasc Interv. 2010;75:596–602.
    1. Matsumoto T, Tada N, Takizawa K, Inoue N, Meguro T. Complex transradial percutaneous coronary intervention using 7.5 Fr sheathless guide catheter system. Catheter Cardiovasc Interv. 2011;77:S152.
    1. Mizuno S, Takeshita S, Taketani Y, Saito S. Percutaneous coronary intervention using a virtual 3‐Fr guiding catheter. Catheter Cardiovasc Interv. 2010;75:983–988.
    1. Moarof I, Hellige G, Grochenig E, Vuilliomenet A. Abstract OP030: Incidence and predictors of radial artery occlusion after transradial coronary angiography and PCI. EuroIntervention. 2014;Euro14A:OP030–OP030.
    1. Monsegu J, Hamon M, Diaz JF, Briki R, Masotti M, Valdes M, Louvard Y, Hildick‐Smith D. Doppler control of radial artery after use of TR band following coronarography and/or angioplasty: DRABAND study results. J Am Coll Cardiol. 2012;60:B119.
    1. Nakamura S, Oshima S, Noda K, Fukushima H, Nishijima T. Safety and efficacy of transradial coronary intervention using a 6.5Fr sheathless guide catheter. Eur Heart J. 2011;32:399.
    1. Nagai S, Abe S, Sato T, Hozawa K, Yuki K, Hanashima K, Tomoike H. Ultrasonic assessment of vascular complications in coronary angiography and angioplasty after transradial approach. Am J Cardiol. 1999;83:180–186.
    1. Ozdemir L, Oguz S, Tokmakoglu H, Erdem K. The effect of short‐term enoxaparin therapy on radial artery occlusion after the transradial approach coronary angiography. EuroIntervention. 2013;9:151.
    1. Pancholy SB. Impact of two different hemostatic devices on radial artery outcomes after transradial catheterization. J Invasive Cardiol. 2009;21:101–104.
    1. Pancholy SB, Patel TM. Effect of duration of hemostatic compression on radial artery occlusion after transradial access. Catheter Cardiovasc Interv. 2011;79:78–81.
    1. Pancholy SB, Sanghvi KA, Patel TM. Radial artery access technique evaluation trial: randomized comparison of Seldinger versus modified Seldinger technique for arterial access for transradial catheterization. Catheter Cardiovasc Interv. 2012;80:288–291.
    1. Pancholy SB, Bertrand OF, Patel T. Comparison of a priori versus provisional heparin therapy on radial artery occlusion after transradial coronary angiography and patent hemostasis (from the PHARAOH Study). Am J Cardiol. 2012;110:173–176.
    1. Pancholy SB, Ahmed I, Bertrand OF, Patel T. Frequency of radial artery occlusion after transradial access in patients receiving warfarin therapy and undergoing coronary angiography. Am J Cardiol. 2014;113:211–214.
    1. Plante S, Cantor WJ, Goldman L, Miner S, Quesnelle A, Ganapathy A, Popel A, Bertrand OF. Comparison of bivalirudin versus heparin on radial artery occlusion after transradial catheterization. Catheter Cardiovasc Interv. 2010;76:654–658.
    1. Politi L, Aprile A, Paganelli C, Amato A, Zoccai GB, Sgura F, Monopoli D, Rossi R, Modena MG, Sangiorgi GM. Randomized clinical trial on short‐time compression with Kaolin‐filled pad: a new strategy to avoid early bleeding and subacute radial artery occlusion after percutaneous coronary intervention. J Interv Cardiol. 2011;24:65–72.
    1. Rathore S, Stables RH, Pauriah M, Hakeem M, Mills JD, Palmer ND, Perry RA, Morris JL. A randomised comparison of TR band and radistop haemostatic compression devices after transradial coronary intervention. Heart. 2010;96:A21.
    1. Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, Perry R, Morris JL. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomised study. Heart. 2010;96:A20.
    1. Ruhnau J, Schroder S. Prevalence of and risk factors for radial artery complications after transradial cardiac catheterization. Circulation. 2013;128:A18953.
    1. Schiano P, Barbou F, Chenilleau MC, Louembe J, Monsegu J. Adjusted weight anticoagulation for radial approach in elective coronarography: the AWARE coronarography study. EuroIntervention. 2010;6:247–250.
    1. Shantha GPS, Pancholy SB. Comparison of incidence of radial artery occlusion in patients undergoing trans‐radial intervention with or without a sheath: a prospective cohort study. Circulation. 2014;130:A13877.
    1. Spaulding C, Lefèvre T, Funck F, Thébault B, Chauveau M, Ben Hamda K, Chalet Y, Monségu H, Tsocanakis O, Py A, Guillard N, Weber S. Left radial approach for coronary angiography: results of a prospective study. Cathet Cardiovasc Diagn. 1996;39:365–370.
    1. Sreevatsa NS, Garg N, Kapoor A, Tewari S, Kumar S, Khanna R, Goel PK. Comparison of conventional versus patent haemostasis in patients undergoing transradial coronary angioplasty. Eur Heart J. 2014;35:129.
    1. Takeshita S, Asano H, Hata T, Hibi K, Ikari Y, Kan Y, Katsuki T, Kawasaki T, Masutani M, Matsumura T, Premchand R, Rao S, Suzuki T, Takahashi A, Takeda R, Tanaka S, Yamazaki S, Yin WH, Yoshimachi F, Saito S. Abstract POS003: Radial artery occlusion after 4FR versus 6FR transradial coronary intervention. EuroIntervention. 2014;Euro14A:POS003–POS003.
    1. Tuncez A, Kaya Z, Aras D, Yildiz A, Gul EE, Tekinalp M, Karakas MF, Kisacik HL. Incidence and predictors of radial artery occlusion associated transradial catheterization. Int J Med Sci. 2013;10:1715–1719.
    1. Tonomura D, Shimada Y, Yano K, Ito K, Takehara K, Kino N, Furubayashi K, Kurotobi T, Tsuchida T, Fukumoto H. Feasibility and safety of a virtual 3‐Fr sheathless‐guiding system for percutaneous coronary intervention. Catheter Cardiovasc Interv. 2014;84:426–435.
    1. Uhlemann M, Gielen S, Woitek FJ, Moebius‐Winkler S, Linke A, Schuler GC. Impact of low molecular weight heparin on reperfusion rates in patients with radial artery occlusion after cardiac catheterization. Results and follow‐up in 113 patients. J Am Coll Cardiol. 2011;58:B143.
    1. Uhlemann M, Gielen S, Linke A, Erbs S, Moebius‐Winkler S, Thiele H, Schuler GC. Impact of sheath size on radial access site complications: the Leipzig prospective vascular ultrasound registry in radial artery catheterization. Results of 574 consecutive patients. Eur Heart J. 2011;32:955.
    1. Wong CP, Ho HH, Tan J, Loh JK, Ooi YW, Jafary FH, Foo D, Ong PJ. Abstract 243: Radial artery patency post percutaneous coronary intervention with intravenous enoxaparin as procedural anticoagulant. EuroIntervention. 2012;8 Supplement N;243–243.
    1. Wu SS, Galani RJ, Bahro A, Moore JA, Burket MW, Cooper CJ. 8 french transradial coronary interventions: clinical outcome and late effects on the radial artery and hand function. J Invasive Cardiol. 2000;12:605–609.
    1. Zhou YJ, Zhao YX, Cao Z, Fu XH, Nie B, Liu YY, Guo YH, Cheng WJ, Jia DA. Incidence and risk factors of acute radial artery occlusion following transradial percutaneous coronary intervention. Nat Med J China Zhonghua Yi Xue Za Zhi. 2007;87:1531–1534.
    1. Zankl AR, Andrassy M, Volz C, Ivandic B, Krumsdorf U, Katus HA, Blessing E. Radial artery thrombosis following transradial coronary angiography: incidence and rationale for treatment of symptomatic patients with low‐molecular‐weight‐heparins. Clin Res Cardiol. 2010;99:841–847.
    1. Dharma S, Kedev S, Patel T, Kiemeneij F, Gilchrist IC. A novel approach to reduce radial artery occlusion after trans radial catheterization; post procedure/prehemostasis intra‐arterial nitroglycerin. Catheter Cardiovasc Interv. 2015;85:818–825.
    1. Chugh SK, Chugh Y, Chugh S. Overcoming the challenge of transradial interventions in women: insights from a color Doppler study. J Am Coll Cardiol. 2014;64:B240.
    1. Chugh S, Chugh Y. Radial artery occlusion: size & more‐how small is too small? J Invasive Cardiol. 2015;27:E113–E114.
    1. Rao SV, Tremmel JA, Gilchrist IC, Shah PB, Gulati R, Shroff AR, Crisco V, Woody W, Zoghbi G, Duffy PL, Sanghvi K, Krucoff MW, Pyne CT, Skelding KA, Patel T, Pancholy SB; Society for Cardiovascular Angiography and Intervention's Transradial Working Group . Best practices for transradial angiography and intervention: a consensus statement from the Society for Cardiovascular Angiography and Intervention's Transradial Working Group. Catheter Cardiovasc Interv. 2014;83:228–236.
    1. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–387.
    1. Charakida M, Masi S, Lüscher TF, Kastelein JJ, Deanfield JE. Assessment of atherosclerosis: the role of flow‐mediated dilatation. Eur Heart J. 2010;31:2854–2861.
    1. Yan Z, Zhou Y, Zhao Y, Zhou Z, Yang S, Wang Z. Impact of transradial coronary procedures on radial artery function. Angiology. 2014;65:104–107.
    1. Yonetsu T, Kakuta T, Lee T, Takayama K, Kakita K, Iwamoto T, Kawaguchi N, Takahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M. Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur Heart J. 2010;31:1608–1615.
    1. Sakai H, Ikeda S, Harada T, Yonashiro S, Ozumi K, Ohe H, Ochiai M, Miyahara Y, Kohno S. Limitations of successive transradial approach in the same arm: the Japanese experience. Catheter Cardiovasc Interv. 2001;54:204–208.
    1. Lefevre T, Thebault B, Spaulding C, Funck F, Chaveau M, Guillard N, Chalet Y, Bellorini M, Guerin F. Radial artery patency after percutaneous left radial artery approach for coronary angiography: the role of heparin. Eur Heart J. 1995;16: 293–297.

Source: PubMed

3
Subscribe