Neuroinflammation after intracerebral hemorrhage

Eva Mracsko, Roland Veltkamp, Eva Mracsko, Roland Veltkamp

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.

Keywords: adaptive immunity; innate immunity; intracerebral hemorrhage; neuroinflammation; stroke.

Figures

Figure 1
Figure 1
Primary and secondary brain damage after intracerebral hemorrhage.

References

    1. Ajami B., Bennett J. L., Krieger C., Tetzlaff W., Rossi F. M. (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543. 10.1038/nn2014
    1. Anderson C. S., Heeley E., Huang Y., Wang J., Stapf C., Delcourt C., et al. . (2013). Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 368, 2355–2365. 10.1056/NEJMoa1214609
    1. Aronowski J., Hall C. E. (2005). New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol. Res. 27, 268–279. 10.1179/016164105x25225
    1. Aronowski J., Zhao X. (2011). Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42, 1781–1786. 10.1161/strokeaha.110.596718
    1. Barnes P. J. (1996). Is immunotherapy for asthma worthwhile? N Engl J. Med. 334, 531–532. 10.1056/NEJM199602223340811
    1. Barnes P. J., Karin M. (1997). Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J. Med. 336, 1066–1071. 10.1056/nejm199704103361506
    1. Belayev L., Saul I., Curbelo K., Busto R., Belayev A., Zhang Y., et al. . (2003). Experimental intracerebral hemorrhage in the mouse: histological, behavioral and hemodynamic characterization of a double-injection model. Stroke 34, 2221–2227. 10.1161/01.str.0000088061.06656.1e
    1. Brea D., Sobrino T., Ramos-Cabrer P., Castillo J. (2009). Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc. Dis. 27(Suppl. 1), 48–64. 10.1159/000200441
    1. Broderick J. P., Brott T. G., Duldner J. E., Tomsick T., Huster G. (1993). Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24, 987–993. 10.1161/01.str.24.7.987
    1. Brott T., Broderick J., Kothari R., Barsan W., Tomsick T., Sauerbeck L., et al. . (1997). Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 28, 1–5. 10.1161/01.str.28.1.1
    1. Bullock R., Mendelow A. D., Teasdale G. M., Graham D. I. (1984). Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: description of technique, ICP changes and neuropathological findings. Neurol. Res. 6, 184–188.
    1. Campanella M., Sciorati C., Tarozzo G., Beltramo M. (2002). Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 33, 586–592. 10.1161/hs0202.103399
    1. Castelli D. D., Terreno E., Cabella C., Chaabane L., Lanzardo S., Tei L., et al. . (2009). Evidence for in vivo macrophage mediated tumor uptake of paramagnetic/fluorescent liposomes. NMR Biomed. 22, 1084–1092. 10.1002/nbm.1416
    1. Castillo J., Dávalos A., Alvarez-Sabín J., Pumar J. M., Leira R., Silva Y., et al. . (2002). Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58, 624–629. 10.1212/wnl.58.4.624
    1. Chaitanya G. V., Schwaninger M., Alexander J. S., Babu P. P. (2010). Granzyme-b is involved in mediating post-ischemic neuronal death during focal cerebral ischemia in rat model. Neuroscience 165, 1203–1216. 10.1016/j.neuroscience.2009.10.067
    1. Chamorro Á., Meisel A., Planas A. M., Urra X., van de Beek D., Veltkamp R. (2012). The immunology of acute stroke. Nat. Rev. Neurol. 8, 401–410. 10.1038/nrneurol.2012.98
    1. Chang C. F., Chen S. F., Lee T. S., Lee H. F., Chen S. F., Shyue S. K. (2011). Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am. J. Pathol. 178, 1749–1761. 10.1016/j.ajpath.2010.12.023
    1. Chauveau F., Boutin H., Van Camp N., Dollé F., Tavitian B. (2008). Nuclear imaging of neuroinflammation: a comprehensive review of [C-11]PK11195 challengers. Eur. J. Nucl. Med. Mol. Imaging 35, 2304–2319. 10.1007/s00259-008-0908-9
    1. Chauveau F., Boutin H., Van Camp N., Thominiaux C., Hantraye P., Rivron L., et al. . (2011). In vivo imaging of neuroinflammation in the rodent brain with [C-11]SSR180575, a novel indoleacetamide radioligand of the translocator protein (18 kDa). Eur. J. Nucl. Med. Mol. Imaging 38, 509–514. 10.1007/s00259-010-1628-5
    1. Chiba K. (2005). FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol. Ther. 108, 308–319. 10.1016/j.pharmthera.2005.05.002
    1. Chu K., Jeong S. W., Jung K. H., Han S. Y., Lee S. T., Kim M., et al. . (2004). Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J. Cereb. Blood Flow Metab. 24, 926–933. 10.1097/01.wcb.0000130866.25040.7d
    1. Ciarmiello A. (2011). Imaging of neuroinflammation. Eur. J. Nucl. Med. Mol. Imaging 38, 2198–2201. 10.1007/s00259-011-1959-x
    1. Clark W., Gunion-Rinker L., Lessov N., Hazel K. (1998). Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke 29, 2136–2140. 10.1161/01.str.29.10.2136
    1. Clark J. F., Loftspring M., Wurster W. L., Beiler S., Beiler C., Wagner K. R., et al. . (2008). Bilirubin oxidation products, oxidative stress and intracerebral hemorrhage. Acta Neurochir. Suppl. 105, 7–12. 10.1007/978-3-211-09469-3_2
    1. Cunningham L. A., Wetzel M., Rosenberg G. A. (2005). Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50, 329–339. 10.1002/glia.20169
    1. David S., Kroner A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399. 10.1038/nrn3053
    1. Davis S. M., Broderick J., Hennerici M., Brun N. C., Diringer M. N., Mayer S. A., et al. . (2006). Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66, 1175–1181. 10.1212/01.wnl.0000208408.98482.99
    1. Del Bigio M. R., Yan H. J., Buist R., Peeling J. (1996). Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke 27, 2312–2319; discussion 2319–2320. 10.1161/01.str.27.12.2312
    1. D’Mello C., Le T., Swain M. G. (2009). Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102. 10.1523/jneurosci.3567-08.2009
    1. Doens D., Fernández P. L. (2014). Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J. Neuroinflammation 11:48. 10.1186/1742-2094-11-48
    1. Dolinskas C. A., Bilaniuk L. T., Zimmerman R. A., Kuhl D. E., Alavi A. (1977). Computed tomography of intracerebral hematomas. II. Radionuclide and transmission CT studies of the perihematoma region. AJR Am. J. Roentgenol. 129, 689–692. 10.2214/ajr.129.4.689
    1. Donovan F. M., Pike C. J., Cotman C. W., Cunningham D. D. (1997). Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J. Neurosci. 17, 5316–5326.
    1. Dziedzic T., Bartus S., Klimkowicz A., Motyl M., Slowik A., Szczudlik A. (2002). Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke 33, 2334–2335. 10.1161/01.str.0000027211.73567.fa
    1. Emsley H. C., Tyrrell P. J. (2002). Inflammation and infection in clinical stroke. J. Cereb. Blood Flow Metab. 22, 1399–1419. 10.1097/00004647-200212000-00001
    1. Enzmann G., Mysiorek C., Gorina R., Cheng Y. J., Ghavampour S., Hannocks M. J., et al. . (2013). The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 125, 395–412. 10.1007/s00401-012-1076-3
    1. Fang H., Chen J., Lin S., Wang P., Wang Y., Xiong X., et al. . (2014). CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J. Immunol. 192, 5984–5992. 10.4049/jimmunol.1400054
    1. Fang H., Wang P. F., Zhou Y., Wang Y. C., Yang Q. W. (2013). Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J. Neuroinflammation 10:27. 10.1186/1742-2094-10-27
    1. Fisher C. M. (1971). Pathological observations in hypertensive cerebral hemorrhage. J. Neuropathol. Exp. Neurol. 30, 536–550. 10.1097/00005072-197107000-00015
    1. Fisher C. M. (2003). Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J. Neuropathol. Exp. Neurol. 62, 104–107.
    1. Florczak-Rzepka M., Grond-Ginsbach C., Montaner J., Steiner T. (2012). Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc. Dis. 34, 249–262. 10.1159/000341686
    1. Fu Y., Hao J., Zhang N., Ren L., Sun N., Li Y. J., et al. . (2014). Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092–1101. 10.1001/jamaneurol.2014.1065
    1. Fujimoto S., Katsuki H., Ohnishi M., Takagi M., Kume T., Akaike A. (2007). Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144, 694–701. 10.1016/j.neuroscience.2006.09.049
    1. Gabrusiewicz K., Ellert-Miklaszewska A., Lipko M., Sielska M., Frankowska M., Kaminska B. (2011). Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6:e23902. 10.1371/journal.pone.0023902
    1. Gao L., Lu Q., Huang L. J., Ruan L. H., Yang J. J., Huang W. L., et al. . (2014). Transplanted neural stem cells modulate regulatory T, γδ T cells and corresponding cytokines after intracerebral hemorrhage in rats. Int. J. Mol. Sci. 15, 4431–4441. 10.3390/ijms15034431
    1. Gauberti M., Montagne A., Marcos-Contreras O. A., Le Béhot A., Maubert E., Vivien D. (2013). Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke 44, 1988–1996. 10.1161/strokeaha.111.000544
    1. Gautier S., Ouk T., Petrault O., Caron J., Bordet R. (2009). Neutrophils contribute to intracerebral haemorrhages after treatment with recombinant tissue plasminogen activator following cerebral ischaemia. Br. J. Pharmacol. 156, 673–679. 10.1111/j.1476-5381.2009.00068.x
    1. Gautschi O. P., Schaller K. (2013). Surgery or conservative therapy for cerebral haemorrhage? Lancet 382, 377–378. 10.1016/s0140-6736(13)61087-9
    1. Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., et al. . (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845. 10.1126/science.1194637
    1. Gong C., Hoff J. T., Keep R. F. (2000). Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 871, 57–65. 10.1016/s0006-8993(00)02427-6
    1. Gong Y., Tian H., Xi G., Keep R. F., Hoff J. T., Hua Y. (2006). Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta Neurochir. Suppl. 96, 232–236. 10.1007/3-211-30714-1_50
    1. Gong Y., Xi G., Hu H., Gu Y., Huang F., Keep R. F., et al. . (2008). Increase in brain thrombin activity after experimental intracerebral hemorrhage. Acta Neurochir. Suppl. 105, 47–50. 10.1007/978-3-211-09469-3_10
    1. Greenhalgh A. D., Brough D., Robinson E. M., Girard S., Rothwell N. J., Allan S. M. (2012). Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis. Model Mech. 5, 823–833. 10.1242/dmm.008557
    1. Grilli M., Memo M. (1999). Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ. 6, 22–27. 10.1038/sj.cdd.4400463
    1. Guo F. Q., Li X. J., Chen L. Y., Yang H., Dai H. Y., Wei Y. S., et al. . (2006). Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 18, 290–293.
    1. Hammond M. D., Ai Y., Sansing L. H. (2012). Gr1+ macrophages and dendritic cells dominate the inflammatory infiltrate 12 hours after experimental intracerebral hemorrhage. Transl. Stroke Res. 3, s125–s131. 10.1007/s12975-012-0174-9
    1. Hammond M. D., Taylor R. A., Mullen M. T., Ai Y., Aguila H. L., Mack M., et al. . (2014). CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 34, 3901–3909. 10.1523/jneurosci.4070-13.2014
    1. Hampton M. B., Kettle A. J., Winterbourn C. C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase and bacterial killing. Blood 92, 3007–3017.
    1. Han N., Ding S. J., Wu T., Zhu Y. L. (2008). Correlation of free radical level and apoptosis after intracerebral hemorrhage in rats. Neurosci. Bull. 24, 351–358. 10.1007/s12264-008-0711-4
    1. Hanley D. F. (2009). Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke 40, 1533–1538. 10.1161/strokeaha.108.535419
    1. Helbok R., Kurtz P., Schmidt J. M., Stuart R. M., Fernandez L., Malhotra R., et al. . (2011). Effect of mannitol on brain metabolism and tissue oxygenation in severe haemorrhagic stroke. J. Neurol. Neurosurg. Psychiatry 82, 378–383. 10.1136/jnnp.2009.198754
    1. Hernandez-Ontiveros D. G., Tajiri N., Acosta S., Giunta B., Tan J., Borlongan C. V. (2013). Microglia activation as a biomarker for traumatic brain injury. Front. Neurol. 4:30. 10.3389/fneur.2013.00030
    1. Hickenbottom S. L., Grotta J. C., Strong R., Denner L. A., Aronowski J. (1999). Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke 30, 2472–2477; discussion 2477–2478. 10.1161/01.str.30.11.2472
    1. Hoyte L. C., Brooks K. J., Nagel S., Akhtar A., Chen R. L., Mardiguian S., et al. . (2010). Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J. Cereb. Blood Flow Metab. 30, 1178–1187. 10.1038/jcbfm.2009.287
    1. Hua Y., Keep R. F., Gu Y., Xi G. (2009). Thrombin and brain recovery after intracerebral hemorrhage. Stroke 40, S88–S89. 10.1161/strokeaha.108.533281
    1. Hua Y., Wu J., Keep R. F., Nakamura T., Hoff J. T., Xi G. (2006). Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 58, 542–550; discussion 542–550. 10.1227/
    1. Huang F. P., Xi G., Keep R. F., Hua Y., Nemoianu A., Hoff J. T. (2002). Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J. Neurosurg. 96, 287–293. 10.3171/jns.2002.96.2.0287
    1. Iadecola C., Anrather J. (2011). The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808. 10.1038/nm.2399
    1. Jacobs A. H., Tavitian B., INMiND consortium . (2012). Noninvasive molecular imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 32, 1393–1415. 10.1038/jcbfm.2012.53
    1. James M. L., Warner D. S., Laskowitz D. T. (2008). Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit. Care 9, 139–152. 10.1007/s12028-007-9030-2
    1. Kaczmarek L., Lapinska-Dzwonek J., Szymczak S. (2002). Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J. 21, 6643–6648. 10.1093/emboj/cdf676
    1. Kazui S., Naritomi H., Yamamoto H., Sawada T., Yamaguchi T. (1996). Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke 27, 1783–1787. 10.1161/01.str.27.10.1783
    1. Keep R. F., Hua Y., Xi G. (2012). Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 11, 720–731. 10.1016/s1474-4422(12)70104-7
    1. Keep R. F., Zhou N., Xiang J., Andjelkovic A. V., Hua Y., Xi G. (2014). Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18. 10.1186/2045-8118-11-18
    1. Kiferle L., Politis M., Muraro P. A., Piccini P. (2011). Positron emission tomography imaging in multiple sclerosis-current status and future applications. Eur. J. Neurol. 18, 226–231. 10.1111/j.1468-1331.2010.03154.x
    1. Kigerl K. A., Gensel J. C., Ankeny D. P., Alexander J. K., Donnelly D. J., Popovich P. G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444. 10.1523/JNEUROSCI.3257-09.2009
    1. Knowland D., Arac A., Sekiguchi K. J., Hsu M., Lutz S. E., Perrino J., et al. . (2014). Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82, 603–617. 10.1016/j.neuron.2014.03.003
    1. Kobayashi K., Imagama S., Ohgomori T., Hirano K., Uchimura K., Sakamoto K., et al. . (2013). Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 4:e525. 10.1038/cddis.2013.54
    1. Koeppen A. H., Dickson A. C., Smith J. (2004). Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J. Neuropathol. Exp. Neurol. 63, 587–597.
    1. Kreutzberg G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318. 10.1016/0166-2236(96)10049-7
    1. Kuramatsu J. B., Huttner H. B., Schwab S. (2013). Advances in the management of intracerebral hemorrhage. J. Neural Transm. 120(Suppl. 1), S35–S41. 10.1007/s00702-013-1040-y
    1. Lalancette-Hébert M., Gowing G., Simard A., Weng Y. C., Kriz J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605. 10.1523/jneurosci.5360-06.2007
    1. Lambertsen K. L., Meldgaard M., Ladeby R., Finsen B. (2005). A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 25, 119–135. 10.1038/sj.jcbfm.9600014
    1. Lee M. C., Heaney L. M., Jacobson R. L., Klassen A. C. (1975). Cerebrospinal fluid in cerebral hemorrhage and infarction. Stroke 6, 638–641. 10.1161/01.str.6.6.638
    1. Lee K. R., Kawai N., Kim S., Sagher O., Hoff J. T. (1997). Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability and cell survival in a rat model. J. Neurosurg. 86, 272–278. 10.3171/jns.1997.86.2.0272
    1. Lei B., Dawson H. N., Roulhac-Wilson B., Wang H., Laskowitz D. T., James M. L. (2013). Tumor necrosis factor alpha antagonism improves neurological recovery in murine intracerebral hemorrhage. J. Neuroinflammation 10:103. 10.1186/1742-2094-10-103
    1. Liao B., Zhao W., Beers D. R., Henkel J. S., Appel S. H. (2012). Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152. 10.1016/j.expneurol.2012.06.011
    1. Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S., et al. . (2009). Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199. 10.1038/nm.1927
    1. Liesz A., Zhou W., Mracskó É., Karcher S., Bauer H., Schwarting S., et al. . (2011). Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134, 704–720. 10.1093/brain/awr008
    1. Lin S., Yin Q., Zhong Q., Lv F. L., Zhou Y., Li J. Q., et al. . (2012). Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation 9:46. 10.1186/1742-2094-9-46
    1. Liu D. Z., Ander B. P., Xu H., Shen Y., Kaur P., Deng W., et al. . (2010). Blood-brain barrier breakdown and repair by Src after thrombin-induced injury. Ann. Neurol. 67, 526–533. 10.1002/ana.21924
    1. Loftspring M. C., Hansen C., Clark J. F. (2010). A novel brain injury mechanism after intracerebral hemorrhage: the interaction between heme products and the immune system. Med. Hypotheses 74, 63–66. 10.1016/j.mehy.2009.08.002
    1. Loftspring M. C., McDole J., Lu A., Clark J. F., Johnson A. J. (2009). Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes. J. Cereb. Blood Flow Metab. 29, 137–143. 10.1038/jcbfm.2008.114
    1. Luheshi N. M., Rothwell N. J., Brough D. (2009). Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br. J. Pharmacol. 157, 1318–1329. 10.1111/j.1476-5381.2009.00331.x
    1. Ma Q., Manaenko A., Khatibi N. H., Chen W., Zhang J. H., Tang J. (2011). Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J. Cereb. Blood Flow Metab. 31, 881–893. 10.1038/jcbfm.2010.167
    1. MacLellan C. L., Auriat A. M., McGie S. C., Yan R. H., Huynh H. D., De Butte M. F., et al. . (2006). Gauging recovery after hemorrhagic stroke in rats: implications for cytoprotection studies. J. Cereb. Blood Flow Metab. 26, 1031–1042. 10.1038/sj.jcbfm.9600255
    1. MacLellan C. L., Silasi G., Auriat A. M., Colbourne F. (2010). Rodent models of intracerebral hemorrhage. Stroke 41, S95–S98. 10.1161/strokeaha.110.594457
    1. MacLellan C. L., Silasi G., Poon C. C., Edmundson C. L., Buist R., Peeling J., et al. . (2008). Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J. Cereb. Blood Flow Metab. 28, 516–525. 10.1038/sj.jcbfm.9600548
    1. Masada T., Hua Y., Xi G., Yang G. Y., Hoff J. T., Keep R. F. (2001). Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J. Neurosurg. 95, 680–686. 10.3171/jns.2001.95.4.0680
    1. Matsushita H., Hijioka M., Ishibashi H., Anan J., Kurauchi Y., Hisatsune A., et al. . (2014). Suppression of CXCL2 upregulation underlies the therapeutic effect of the retinoid Am80 on intracerebral hemorrhage in mice. J. Neurosci. Res. 92, 1024–1034. 10.1002/jnr.23379
    1. Matsushita K., Meng W., Wang X., Asahi M., Asahi K., Moskowitz M. A., et al. . (2000). Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J. Cereb. Blood Flow Metab. 20, 396–404. 10.1097/00004647-200002000-00022
    1. Mayer S. A., Brun N. C., Begtrup K., Broderick J., Davis S., Diringer M. N., et al. . (2008). Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J. Med. 358, 2127–2137. 10.1056/NEJMoa0707534
    1. Mayne M., Fotheringham J., Yan H. J., Power C., Del Bigio M. R., Peeling J., et al. . (2001a). Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann. Neurol. 49, 727–735. 10.1002/ana.1010
    1. Mayne M., Ni W., Yan H. J., Xue M., Johnston J. B., Del Bigio M. R., et al. . (2001b). Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 32, 240–248. 10.1161/01.str.32.1.240
    1. McAteer M. A., Sibson N. R., von Zur Muhlen C., Schneider J. E., Lowe A. S., Warrick N., et al. . (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat. Med. 13, 1253–1258. 10.1038/nm1631
    1. Mendelow A. D., Gregson B. A., Mitchell P. M., Murray G. D., Rowan E. N., Gholkar A. R. (2011). Surgical trial in lobar intracerebral haemorrhage (STICH II) protocol. Trials 12:124. 10.1186/1745-6215-12-124
    1. Menon R. S., Burgess R. E., Wing J. J., Gibbons M. C., Shara N. M., Fernandez S., et al. . (2012). Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann. Neurol. 71, 199–205. 10.1002/ana.22668
    1. Morgan T., Awad I., Keyl P., Lane K., Hanley D. (2008). Preliminary report of the clot lysis evaluating accelerated resolution of intraventricular hemorrhage (CLEAR-IVH) clinical trial. Acta Neurochir. Suppl. 105, 217–220. 10.1007/978-3-211-09469-3_41
    1. Morgenstern L. B., Hemphill J. C., 3rd, Anderson C., Becker K., Broderick J. P., Connolly E. S., Jr., et al. . (2010). Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 41, 2108–2129. 10.1161/STR.0b013e3181ec611b
    1. Moxon-Emre I., Schlichter L. C. (2011). Neutrophil depletion reduces blood-brain barrier breakdown, axon injury and inflammation after intracerebral hemorrhage. J. Neuropathol. Exp. Neurol. 70, 218–235. 10.1097/nen.0b013e31820d94a5
    1. Mracsko E., Javidi E., Na S. Y., Kahn A., Liesz A., Veltkamp R. (2014). Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke 45, 2107–2114. 10.1161/strokeaha.114.005801
    1. Nakamura T., Keep R. F., Hua Y., Schallert T., Hoff J. T., Xi G. (2004). Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J. Neurosurg. 100, 672–678. 10.3171/jns.2004.100.4.0672
    1. Nakamura T., Kuroda Y., Yamashita S., Zhang X., Miyamoto O., Tamiya T., et al. . (2008). Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 39, 463–469. 10.1161/strokeaha.107.486654
    1. Newell D. W., Shah M. M., Wilcox R., Hansmann D. R., Melnychuk E., Muschelli J., et al. . (2011). Minimally invasive evacuation of spontaneous intracerebral hemorrhage using sonothrombolysis. J. Neurosurg. 115, 592–601. 10.3171/2011.5.jns10505
    1. Nguyen H. X., O’barr T. J., Anderson A. J. (2007). Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species and TNF-alpha. J. Neurochem. 102, 900–912. 10.1111/j.1471-4159.2007.04643.x
    1. O’Donnell M. J., Xavier D., Liu L., Zhang H., Chin S. L., Rao-Melacini P., et al. . (2010). Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376, 112–123. 10.1016/s0140-6736(10)60834-3
    1. Ohnishi M., Katsuki H., Fujimoto S., Takagi M., Kume T., Akaike A. (2007). Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp. Neurol. 206, 43–52. 10.1016/j.expneurol.2007.03.030
    1. Ohnishi M., Katsuki H., Fukutomi C., Takahashi M., Motomura M., Fukunaga M., et al. . (2011). HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 61, 975–980. 10.1016/j.neuropharm.2011.06.026
    1. Ohnishi M., Katsuki H., Izumi Y., Kume T., Takada-Takatori Y., Akaike A. (2010). Mitogen-activated protein kinases support survival of activated microglia that mediate thrombin-induced striatal injury in organotypic slice culture. J. Neurosci. Res. 88, 2155–2164. 10.1002/jnr.22375
    1. Ohnishi M., Monda A., Takemoto R., Matsuoka Y., Kitamura C., Ohashi K., et al. . (2013). Sesamin suppresses activation of microglia and p44/42 MAPK pathway, which confers neuroprotection in rat intracerebral hemorrhage. Neuroscience 232C, 45–52. 10.1016/j.neuroscience.2012.11.057
    1. Okauchi M., Hua Y., Keep R. F., Morgenstern L. B., Schallert T., Xi G. (2010). Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 41, 375–382. 10.1161/strokeaha.109.569830
    1. Pachter J. S., de Vries H. E., Fabry Z. (2003). The blood-brain barrier and its role in immune privilege in the central nervous system. J. Neuropathol. Exp. Neurol. 62, 593–604.
    1. Parney I. F., Waldron J. S., Parsa A. T. (2009). Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J. Neurosurg. 110, 572–582. 10.3171/2008.7.jns08475
    1. Patel A. R., Ritzel R., McCullough L. D., Liu F. (2013). Microglia and ischemic stroke: a double-edged sword. Int. J. Physiol. Pathophysiol. Pharmacol. 5, 73–90.
    1. Pearson V. L., Rothwell N. J., Toulmond S. (1999). Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia 25, 311–323. 10.1002/(sici)1098-1136(19990215)25:4<311::aid-glia1>;2-e
    1. Peeling J., Yan H. J., Corbett D., Xue M., Del Bigio M. R. (2001). Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp. Neurol. 167, 341–347. 10.1006/exnr.2000.7564
    1. Pepper M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21, 1104–1117. 10.1161/hq0701.093685
    1. Ponomarev E. D., Maresz K., Tan Y., Dittel B. N. (2007). CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27, 10714–10721. 10.1523/jneurosci.1922-07.2007
    1. Püntener U., Booth S. G., Perry V. H., Teeling J. L. (2012). Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J. Neuroinflammation 9:146. 10.1186/1742-2094-9-146
    1. Qureshi A. I., Mendelow A. D., Hanley D. F. (2009). Intracerebral haemorrhage. Lancet 373, 1632–1644. 10.1016/S0140-6736(09)60371-8
    1. Qureshi A. I., Tuhrim S., Broderick J. P., Batjer H. H., Hondo H., Hanley D. F. (2001). Spontaneous intracerebral hemorrhage. N Engl J. Med. 344, 1450–1460. 10.1056/NEJM200105103441907
    1. Rodríguez-Yáñez M., Brea D., Arias S., Blanco M., Pumar J. M., Castillo J., et al. . (2012). Increased expression of toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. J. Neuroimmunol. 247, 75–80. 10.1016/j.jneuroim.2012.03.019
    1. Rodríguez-Yáñez M., Castillo J. (2008). Role of inflammatory markers in brain ischemia. Curr. Opin. Neurol. 21, 353–357. 10.1097/wco.0b013e3282ffafbf
    1. Rolland W. B., 2nd, Manaenko A., Lekic T., Hasegawa Y., Ostrowski R., Tang J., et al. . (2011). FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir. Suppl. 111, 213–217. 10.1007/978-3-7091-0693-8_36
    1. Ronaldson P. T., Davis T. P. (2012). Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr. Pharm. Des. 18, 3624–3644. 10.2174/138161212802002625
    1. Rosenberg G. A., Mun-Bryce S., Wesley M., Kornfeld M. (1990). Collagenase-induced intracerebral hemorrhage in rats. Stroke 21, 801–807. 10.1161/01.str.21.5.801
    1. Rosenberg G. A., Navratil M. (1997). Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48, 921–926. 10.1212/wnl.48.4.921
    1. Rossin R., Muro S., Welch M. J., Muzykantov V. R., Schuster D. P. (2008). In vivo imaging of Cu-64-labeled polymer nanoparticles targeted to the lung endothelium. J. Nucl. Med. 49, 103–111. 10.2967/jnumed.107.045302
    1. Sakamoto Y., Koga M., Yamagami H., Okuda S., Okada Y., Kimura K., et al. . (2013). Systolic blood pressure after intravenous antihypertensive treatment and clinical outcomes in hyperacute intracerebral hemorrhage: the stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke 44, 1846–1851. 10.1161/STROKEAHA.113.001212
    1. Sansing L. H., Harris T. H., Kasner S. E., Hunter C. A., Kariko K. (2011a). Neutrophil depletion diminishes monocyte infiltration and improves functional outcome after experimental intracerebral hemorrhage. Acta Neurochir. Suppl. 111, 173–178. 10.1007/978-3-7091-0693-8_29
    1. Sansing L. H., Harris T. H., Welsh F. A., Kasner S. E., Hunter C. A., Kariko K. (2011b). Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann. Neurol. 70, 646–656. 10.1002/ana.22528
    1. Savill J. (1997). Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61, 375–380.
    1. Schilling M., Besselmann M., Leonhard C., Mueller M., Ringelstein E. B., Kiefer R. (2003). Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 183, 25–33. 10.1016/s0014-4886(03)00082-7
    1. Schilling M., Besselmann M., Müller M., Strecker J. K., Ringelstein E. B., Kiefer R. (2005). Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 196, 290–297. 10.1016/j.expneurol.2005.08.004
    1. Schroder K., Hertzog P. J., Ravasi T., Hume D. A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189. 10.1189/jlb.0603252
    1. Schwab J. M., Nguyen T. D., Meyermann R., Schluesener H. J. (2001). Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages. J. Neuroimmunol. 114, 232–241. 10.1016/s0165-5728(00)00433-1
    1. Shao X., Zhang H. A., Rajian J. R., Chamberland D. L., Sherman P. S., Quesada C. A., et al. . (2011). 125 I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 5, 8967–8973. 10.1021/nn203138t
    1. Shiratori M., Tozaki-Saitoh H., Yoshitake M., Tsuda M., Inoue K. (2010). P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. J. Neurochem. 114, 810–819. 10.1111/j.1471-4159.2010.06809.x
    1. Soehnlein O., Lindbom L. (2010). Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439. 10.1038/nri2779
    1. Soenen S. J. H., Himmelreich U., Nuytten N., Pisanic T. R., 2nd, Ferrari A., De Cuyper M. (2010). Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6, 2136–2145. 10.1002/smll.201000763
    1. Starossom S. C., Mascanfroni I. D., Imitola J., Cao L., Raddassi K., Hernandez S. F., et al. . (2012). Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263. 10.1016/j.immuni.2012.05.023
    1. Staykov D., Wagner I., Volbers B., Hauer E. M., Doerfler A., Schwab S., et al. . (2011). Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke 42, 2625–2629. 10.1161/strokeaha.111.618611
    1. Steiner T., Al-Shahi Salman R., Beer R., Christensen H., Cordonnier C., Csiba L., et al. . (2014). European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int. J. Stroke 9, 840–855. 10.1111/ijs.12309
    1. Steiner T., Kaste M., Forsting M., Mendelow D., Kwiecinski H., Szikora I., et al. . (2006). Recommendations for the management of intracranial haemorrhage—part I: spontaneous intracerebral haemorrhage. The European stroke initiative writing committee and the writing committee for the EUSI executive committee. Cerebrovasc. Dis. 22, 294–316. 10.1159/000094831
    1. Stern M., Savill J., Haslett C. (1996). Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149, 911–921.
    1. Stoll G., Bendszus M. (2010). New approaches to neuroimaging of central nervous system inflammation. Curr. Opin. Neurol. 23, 282–286. 10.1097/wco.0b013e328337f4b5
    1. Striggow F., Riek M., Breder J., Henrich-Noack P., Reymann K. G., Reiser G. (2000). The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Natl. Acad. Sci. U S A 97, 2264–2269. 10.1073/pnas.040552897
    1. Stuber M., Gilson W. D., Schär M., Kedziorek D. A., Hofmann L. V., Shah S., et al. . (2007). Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-Resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077. 10.1002/mrm.21399
    1. Suzuki Y., Sa Q., Gehman M., Ochiai E. (2011). Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev. Mol. Med. 13:e31. 10.1017/s1462399411002018
    1. Szymanska A., Biernaskie J., Laidley D., Granter-Button S., Corbett D. (2006). Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Exp. Neurol. 197, 189–196. 10.1016/j.expneurol.2005.09.011
    1. Tanaka R., Komine-Kobayashi M., Mochizuki H., Yamada M., Furuya T., Migita M., et al. . (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117, 531–539. 10.1016/s0306-4522(02)00954-5
    1. Tang Z., Gan Y., Liu Q., Yin J. X., Shi J., Shi F. D. (2014). CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J. Neuroinflammation 11:26. 10.1186/1742-2094-11-26
    1. Tang J., Liu J., Zhou C., Alexander J. S., Nanda A., Granger D. N., et al. . (2004). Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J. Cereb. Blood Flow Metab. 24, 1133–1145. 10.1097/
    1. Tarzami S. T., Wang G., Li W., Green L., Singh J. P. (2006). Thrombin and PAR-1 stimulate differentiation of bone marrow-derived endothelial progenitor cells. J. Thromb. Haemost. 4, 656–663. 10.1111/j.1538-7836.2006.01788.x
    1. Taylor R. A., Sansing L. H. (2013). Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin. Dev. Immunol. 2013:746068. 10.1155/2013/746068
    1. Teng W., Wang L., Xue W., Guan C. (2009). Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators Inflamm. 2009:473276. 10.1155/2009/473276
    1. Tessier P. A., Naccache P. H., Clark-Lewis I., Gladue R. P., Neote K. S., Mccoll S. R. (1997). Chemokine networks in vivo: involvement of C-X-C and C-C chemokines in neutrophil extravasation in vivo in response to TNF-alpha. J. Immunol. 159, 3595–3602.
    1. Thanvi B., Robinson T. (2006). Sporadic cerebral amyloid angiopathy—an important cause of cerebral haemorrhage in older people. Age Ageing 35, 565–571. 10.1093/ageing/afl108
    1. Tikka T. M., Koistinaho J. E. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 7527–7533. 10.4049/jimmunol.166.12.7527
    1. Tsopanoglou N. E., Maragoudakis M. E. (2007). Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Semin. Thromb. Hemost. 33, 680–687. 10.1055/s-2007-991535
    1. van Asch C. J., Luitse M. J., Rinkel G. J., van der Tweel I., Algra A., Klijn C. J. (2010). Incidence, case fatality and functional outcome of intracerebral haemorrhage over time, according to age, sex and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 9, 167–176. 10.1016/s1474-4422(09)70340-0
    1. Vaughan P. J., Pike C. J., Cotman C. W., Cunningham D. D. (1995). Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J. Neurosci. 15, 5389–5401.
    1. Vezzani A., Conti M., De Luigi A., Ravizza T., Moneta D., Marchesi F., et al. . (1999). Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065.
    1. Wagner K. R. (2007). Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke 38, 753–758. 10.1161/01.str.0000255033.02904.db
    1. Wagner K. R., Beiler S., Beiler C., Kirkman J., Casey K., Robinson T., et al. . (2006). Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir. Suppl. 96, 177–182. 10.1007/3-211-30714-1_39
    1. Wagner K. R., Sharp F. R., Ardizzone T. D., Lu A., Clark J. F. (2003). Heme and iron metabolism: role in cerebral hemorrhage. J. Cereb. Blood Flow Metab. 23, 629–652. 10.1097/01.wcb.0000073905.87928.6d
    1. Wagner K. R., Xi G., Hua Y., Kleinholz M., de Courten-Myers G. M., Myers R. E., et al. . (1996). Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 27, 490–497. 10.1161/01.str.27.3.490
    1. Wang J. (2010). Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol. 92, 463–477. 10.1016/j.pneurobio.2010.08.001
    1. Wang J., Doré S. (2007a). Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 130, 1643–1652. 10.1093/brain/awm095
    1. Wang J., Doré S. (2007b). Inflammation after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 27, 894–908.
    1. Wang J., Rogove A. D., Tsirka A. E., Tsirka S. E. (2003). Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Ann. Neurol. 54, 655–664. 10.1002/ana.10750
    1. Wang J., Tsirka S. E. (2005). Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 128, 1622–1633. 10.1093/brain/awh489
    1. Wang Y. C., Wang P. F., Fang H., Chen J., Xiong X. Y., Yang Q. W. (2013). Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 44, 2545–2552. 10.1161/STROKEAHA.113.001038
    1. Wang Y. X., Yan A., Ma Z. H., Wang Z., Zhang B., Ping J. L., et al. . (2011). Nuclear factor-kappaB and apoptosis in patients with intracerebral hemorrhage. J. Clin. Neurosci. 18, 1392–1395. 10.1016/j.jocn.2010.11.039
    1. Wang Y. C., Zhou Y., Fang H., Lin S., Wang P. F., Xiong R. P., et al. . (2014). Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann. Neurol. 75, 876–889. 10.1002/ana.24159
    1. Wasserman J. K., Schlichter L. C. (2007). Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp. Neurol. 207, 227–237. 10.1016/j.expneurol.2007.06.025
    1. Winkeler A., Boisgard R., Martin A., Tavitian B. (2010). Radioisotopic imaging of neuroinflammation. J. Nucl. Med. 51, 1–4. 10.2967/jnumed.109.065680
    1. Wisniewski H. (1961). The pathogenesis of some cases of cerebral hemorrhage (a morphologic study of thmargins of hemorrhagic foci and areas of the brain distant form the hemorrhage). Acta Med. Pol. 2, 379–390.
    1. Wu J., Hua Y., Keep R. F., Nakamura T., Hoff J. T., Xi G. (2003). Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34, 2964–2969. 10.1161/01.str.0000103140.52838.45
    1. Wu H., Wu T., Xu X., Wang J., Wang J. (2011). Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 31, 1243–1250. 10.1038/jcbfm.2010.209
    1. Wu J., Yang S., Hua Y., Liu W., Keep R. F., Xi G. (2010). Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir. Suppl. 106, 147–150. 10.1007/978-3-211-98811-4_26
    1. Wu J., Yang S., Xi G., Fu G., Keep R. F., Hua Y. (2009). Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol. Res. 31, 183–188. 10.1179/174313209X385680
    1. Wunder A., Klohs J., Dirnagl U. (2009). Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience 158, 1161–1173. 10.1016/j.neuroscience.2008.10.005
    1. Xi G., Hua Y., Bhasin R. R., Ennis S. R., Keep R. F., Hoff J. T. (2001a). Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke 32, 2932–2938. 10.1161/hs1201.099820
    1. Xi G., Hua Y., Keep R. F., Younger J. G., Hoff J. T. (2001b). Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke 32, 162–167. 10.1161/01.str.32.1.162
    1. Xi G., Keep R. F., Hoff J. T. (1998). Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J. Neurosurg. 89, 991–996. 10.3171/jns.1998.89.6.0991
    1. Xi G., Keep R. F., Hoff J. T. (2006). Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 5, 53–63. 10.1016/s1474-4422(05)70283-0
    1. Xi G., Reiser G., Keep R. F. (2003). The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective? J. Neurochem. 84, 3–9. 10.1046/j.1471-4159.2003.01268.x
    1. Xue M., Del Bigio M. R. (2000). Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci. Lett. 283, 230–232. 10.1016/s0304-3940(00)00971-x
    1. Xue M., Del Bigio M. R. (2003). Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats. J. Stroke Cerebrovasc. Dis. 12, 152–159. 10.1016/s1052-3057(03)00036-3
    1. Yabluchanskiy A., Sawle P., Homer-Vanniasinkam S., Green C. J., Motterlini R. (2010). Relationship between leukocyte kinetics and behavioral tests changes in the inflammatory process of hemorrhagic stroke recovery. Int. J. Neurosci. 120, 765–773. 10.3109/00207454.2010.523129
    1. Yang S., Chen Y., Deng X., Jiang W., Li B., Fu Z., et al. . (2013). Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat. J. Mol. Neurosci. 51, 352–363. 10.1007/s12031-013-9990-y
    1. Yang J. T., Lee T. H., Lee I. N., Chung C. Y., Kuo C. H., Weng H. H. (2011). Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir. (Wien) 153, 2197–2203. 10.1007/s00701-011-1122-2
    1. Yang Z., Liu Y., Yuan F., Li Z., Huang S., Shen H., et al. . (2014a). Sinomenine inhibits microglia activation and attenuates brain injury in intracerebral hemorrhage. Mol. Immunol. 60, 109–114. 10.1016/j.molimm.2014.03.005
    1. Yang S., Song S., Hua Y., Nakamura T., Keep R. F., Xi G. (2008). Effects of thrombin on neurogenesis after intracerebral hemorrhage. Stroke 39, 2079–2084. 10.1161/STROKEAHA.107.508911
    1. Yang Z., Yu A., Liu Y., Shen H., Lin C., Lin L., et al. . (2014b). Regulatory T cells inhibit microglia activation and protect against inflammatory injury in intracerebral hemorrhage. Int. Immunopharmacol. 22, 522–525. 10.1016/j.intimp.2014.06.037
    1. Yang Z., Zhao T., Zou Y., Zhang J. H., Feng H. (2014c). Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunol. Lett. 160, 89–95. 10.1016/j.imlet.2014.03.005
    1. Yao Y., Tsirka S. E. (2012a). The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 60, 908–918. 10.1002/glia.22323
    1. Yao Y., Tsirka S. E. (2012b). Chemokines and their receptors in intracerebral hemorrhage. Transl. Stroke Res. 3, 70–79. 10.1007/s12975-012-0155-z
    1. Yilmaz G., Arumugam T. V., Stokes K. Y., Granger D. N. (2006). Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105–2112. 10.1161/circulationaha.105.593046
    1. Zarbock A., Ley K. (2009). Neutrophil adhesion and activation under flow. Microcirculation 16, 31–42. 10.1080/10739680802350104
    1. Zazulia A. R., Diringer M. N., Videen T. O., Adams R. E., Yundt K., Aiyagari V., et al. . (2001). Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 21, 804–810. 10.1097/00004647-200107000-00005
    1. Zhao X., Grotta J., Gonzales N., Aronowski J. (2009). Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke 40, S92–S94. 10.1161/STROKEAHA.108.533158
    1. Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., et al. . (2007). Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann. Neurol. 61, 352–362. 10.1002/ana.21097
    1. Zhao X., Zhang Y., Strong R., Grotta J. C., Aronowski J. (2006). 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase and reduces inflammation, behavioral dysfunction and neuronal loss after intracerebral hemorrhage in rats. J. Cereb. Blood Flow Metab. 26, 811–820. 10.1038/sj.jcbfm.9600233
    1. Ziai W. C., Tuhrim S., Lane K., McBee N., Lees K., Dawson J., et al. . (2014). A multicenter, randomized, double-blinded, placebo-controlled phase III study of clot lysis evaluation of accelerated resolution of intraventricular hemorrhage (CLEAR III). Int. J. Stroke 9, 536–542. 10.1111/ijs.12097

Source: PubMed

3
Subscribe