Genomic landscape of lymphatic malformations: a case series and response to the PI3Kα inhibitor alpelisib in an N-of-1 clinical trial

Montaser F Shaheen, Julie Y Tse, Ethan S Sokol, Margaret Masterson, Pranshu Bansal, Ian Rabinowitz, Christy A Tarleton, Andrey S Dobroff, Tracey L Smith, Thèrése J Bocklage, Brian K Mannakee, Ryan N Gutenkunst, Joyce Bischoff, Scott A Ness, Gregory M Riedlinger, Roman Groisberg, Renata Pasqualini, Shridar Ganesan, Wadih Arap, Montaser F Shaheen, Julie Y Tse, Ethan S Sokol, Margaret Masterson, Pranshu Bansal, Ian Rabinowitz, Christy A Tarleton, Andrey S Dobroff, Tracey L Smith, Thèrése J Bocklage, Brian K Mannakee, Ryan N Gutenkunst, Joyce Bischoff, Scott A Ness, Gregory M Riedlinger, Roman Groisberg, Renata Pasqualini, Shridar Ganesan, Wadih Arap

Abstract

Background: Lymphatic malformations (LMs) often pose treatment challenges due to a large size or a critical location that could lead to disfigurement, and there are no standardized treatment approaches for either refractory or unresectable cases.

Methods: We examined the genomic landscape of a patient cohort of LMs (n = 30 cases) that underwent comprehensive genomic profiling using a large-panel next-generation sequencing assay. Immunohistochemical analyses were completed in parallel.

Results: These LMs had low mutational burden with hotspot PIK3CA mutations (n = 20) and NRAS (n = 5) mutations being most frequent, and mutually exclusive. All LM cases with Kaposi sarcoma-like (kaposiform) histology had NRAS mutations. One index patient presented with subacute abdominal pain and was diagnosed with a large retroperitoneal LM harboring a somatic PIK3CA gain-of-function mutation (H1047R). The patient achieved a rapid and durable radiologic complete response, as defined in RECIST1.1, to the PI3Kα inhibitor alpelisib within the context of a personalized N-of-1 clinical trial (NCT03941782). In translational correlative studies, canonical PI3Kα pathway activation was confirmed by immunohistochemistry and human LM-derived lymphatic endothelial cells carrying an allele with an activating mutation at the same locus were sensitive to alpelisib treatment in vitro, which was demonstrated by a concentration-dependent drop in measurable impedance, an assessment of cell status.

Conclusions: Our findings establish that LM patients with conventional or kaposiform histology have distinct, yet targetable, driver mutations.

Funding: R.P. and W.A. are supported by awards from the Levy-Longenbaugh Fund. S.G. is supported by awards from the Hugs for Brady Foundation. This work has been funded in part by the NCI Cancer Center Support Grants (CCSG; P30) to the University of Arizona Cancer Center (CA023074), the University of New Mexico Comprehensive Cancer Center (CA118100), and the Rutgers Cancer Institute of New Jersey (CA072720). B.K.M. was supported by National Science Foundation via Graduate Research Fellowship DGE-1143953.

Clinical trial number: NCT03941782.

Keywords: NGS; PI3Kα; genomics; human; lymphatic malformations; medicine.

Conflict of interest statement

MS reports personal fees from Illumina, BMS, and Qiagen (outside of the submitted work). The author has no other competing interests to declare, JT, ES is an employee of Foundation Medicine, Inc, a wholly owned subsidiary of Roche, and owns equity in Roche. The author has no other competing interests to declare, MM, PB, IR, CT, AD, TS, TB, RG, JB, SN, GR No competing interests declared, BM is an employee of Foundation Medicine, Inc, a wholly owned subsidiary of Roche, and owns equity in Roche, RG reports research funding/grant support for clinical trials (to his institution) from Regeneron, BMS, Merck/EMD Serano, Amgen, Roche/Genentech, Philogen; consulting/advisory board fees from Regeneron; and speaker fees for Deciphera (all outside of the submitted work). These arrangements are managed in accordance with the established institutional conflict of interest policies of Rutgers, The State University of New Jersey. The author has no other competing interests to declare, RP, WA Reviewing editor, eLife, SG has consulting agreements with Merck, Roche, Novartis, Foundation Medicine, EQRX, Foghorn Therapeutics, Silagene, and KayoThera and owns equity in Silagene; his spouse is an employee of Merck and owns equity in Merck (all outside of the submitted work). These arrangements are managed in accordance with the established institutional conflict of interest policies of Rutgers, The State University of New Jersey. The author has no other competing interests to declare

© 2022, Shaheen, Tse et al.

Figures

Figure 1.. Mutational landscape and histopathology of…
Figure 1.. Mutational landscape and histopathology of lymphatic malformations (LMs).
(A) Oncoprint showing mutational landscape of 30 LM samples sequenced. (B) Lollipop plot showing spectrum of PIK3CA and NRAS mutations in this cohort. (C) Schema showing details of GOPC–ROS1 fusion identified in an NRAS and PIK3CA wild-type LM. (D) Representative histologic images for LMs with conventional and kaposiform histology. The relative frequencies of PIK3CA and NRAS mutations in the two histologic variants are plotted.
Figure 2.. Imaging and histological analysis of…
Figure 2.. Imaging and histological analysis of lymphatic malformation (LM) patient.
(A) Baseline CT abdomen scan at the time of presentation demonstrating a large retroperitoneal/pancreatic LM. (B) CT abdomen scan 6 weeks after the initiation of alpelisib. (C) CT abdomen scan 1 year into the trial. (D, E) Hematoxylin and eosin (H&E)-stained photomicrographs of the LM showing dilated lymphatic channels percolating through visceral fat and associated patchy lymphocytic inflammation (×4 and ×20, respectively). (F) Immunohistochemistry utilizing an anti-P-6S antibody demonstrates PI3Ka pathway activation within the channels’ lining cells. (G) Anti-P-AKT positivity in the lining endothelium of lymphatic channels as well.
Figure 3.. Alpelisib reduces lymphatic malformation-lymphatic endothelial…
Figure 3.. Alpelisib reduces lymphatic malformation-lymphatic endothelial cell (LM-LEC) viability.
(A) Logarithmic dose–response curve of alpelisib was performed using the xCELLigence RTCA system. 1, 3, 10, 30, and 100 nM (n = 5 replicates) of alpelisib were used to determine the concentration–response curve. The alpelisib half maximal inhibitory concentration (IC50) was calculated for LM-LEC at 24 hr after treatment as 4.72 × 10−9 M. Error bars are shown as mean +/- standard deviation (SD), which was automatically calculated for each data point by the xCELLigence RTCA system software (Version 2.0) based on five replicates per drug concentration. (B) Illustrative picture of LM-LEC clonogenic plaques at 24 hr after alpelisib treatment (4.72 × 10−9 M). Negative, no treatment; dimethyl sulfoxide (DMSO), vehicle control. Experiments were performed two times with similar results. LM-LEC colonies were stained with crystal violet (0.3%). (C) Colony count 24 hr after alpelisib treatment (4.72 × 10−9 M; n = 2 wells/condition). Error bars are shown as mean +/- SD calculated by GraphPad Prism by determining the square root of variance for each data point deviation relative to the mean.
Figure 4.. RNA-seq analysis of lymphatic malformation…
Figure 4.. RNA-seq analysis of lymphatic malformation (LM) samples from index patient (#9).
(A) The heatmap summarizes the results of the differential gene expression analysis. Up- and downregulated genes are shaded red and blue, respectively. (B) The volcano plot summarizes the distribution of genes that were differentially expressed. The vertical axis shows the p value and the horizontal shows the fold-change. The genes that were more than twofold changed and had an adjusted p value less than 0.05 are shaded red. Similar numbers of genes were up- or downregulated.
Figure 5.. Graphical summary of the mutations…
Figure 5.. Graphical summary of the mutations found in genomic analysis of lymphatic malformation (LM) patient cohort (created with BioRender.com).
(A) The majority of LMs have driver mutations that are potentially targetable. (B) LMs with NRAS mutations had kaposiform histopathology. (C) An N-of-1 clinical trial is reported in a patient with a targetable PIK3CA mutation. (D) Comprehensive genomic analyses may reveal further actionable molecular insights.

References

    1. Akhavanfard S, Padmanabhan R, Yehia L, Cheng F, Eng C. Comprehensive germline genomic profiles of children, adolescents and young adults with solid tumors. Nature Communications. 2020;11:2206. doi: 10.1038/s41467-020-16067-1.
    1. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M, Horlings HM, Lum A, Jones S, Senz J, Seckin T, Ho J, Wu R-C, Lac V, Ogawa H, Tessier-Cloutier B, Alhassan R, Wang A, Wang Y, Cohen JD, Wong F, Hasanovic A, Orr N, Zhang M, Popoli M, McMahon W, Wood LD, Mattox A, Allaire C, Segars J, Williams C, Tomasetti C, Boyd N, Kinzler KW, Gilks CB, Diaz L, Wang T-L, Vogelstein B, Yong PJ, Huntsman DG, Shih I-M. Cancer-Associated Mutations in Endometriosis without Cancer. The New England Journal of Medicine. 2017;376:1835–1848. doi: 10.1056/NEJMoa1614814.
    1. Barclay SF, Inman KW, Luks VL, McIntyre JB, Al-Ibraheemi A, Church AJ, Perez-Atayde AR, Mangray S, Jeng M, Kreimer SR, Walker L, Fishman SJ, Alomari AI, Chaudry G, Trenor Iii CC, Adams D, Kozakewich HPW, Kurek KC. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis. Genetics in Medicine. 2019;21:1517–1524. doi: 10.1038/s41436-018-0390-0.
    1. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Journal of Clinical Oncology. 2012;30:282–290. doi: 10.1200/JCO.2011.36.1360.
    1. Boscolo E, Coma S, Luks VL, Greene AK, Klagsbrun M, Warman ML, Bischoff J. AKT hyper-phosphorylation associated with PI3K mutations in lymphatic endothelial cells from a patient with lymphatic malformation. Angiogenesis. 2015;18:151–162. doi: 10.1007/s10456-014-9453-2.
    1. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, Bague S, Scaltriti M, Antonescu CR, Baselga E, Baselga J. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Science Translational Medicine. 2016;8:332–342. doi: 10.1126/scitranslmed.aaf1164.
    1. Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VER, Chivite I, Milà-Guasch M, Pearce W, Solomon I, Angulo-Urarte A, Figueiredo AM, Dewhurst RE, Knox RG, Clark GR, Scudamore CL, Badar A, Kalber TL, Foster J, Stuckey DJ, David AL, Phillips WA, Lythgoe MF, Wilson V, Semple RK, Sebire NJ, Kinsler VA, Graupera M, Vanhaesebroeck B. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Science Translational Medicine. 2016;8:332–343. doi: 10.1126/scitranslmed.aad9982.
    1. Cheng Y, Xu T, Li S, Ruan H. GPX1, a biomarker for the diagnosis and prognosis of kidney cancer, promotes the progression of kidney cancer. Aging. 2019;11:12165–12176. doi: 10.18632/aging.102555.
    1. Croteau SE, Kozakewich HPW, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, Mulliken JB, Trenor CC. Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly. The Journal of Pediatrics. 2014;164:383–388. doi: 10.1016/j.jpeds.2013.10.013.
    1. Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, Shah N, Woltjer R, Somwar R, Gilheeney SW, DeCarvalo A, Mikkelson T, Van Meir EG, Ladanyi M, Druker BJ. Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma. Clinical Cancer Research. 2018;24:6471–6482. doi: 10.1158/1078-0432.CCR-18-1052.
    1. Delestre F, Venot Q, Bayard C, Fraissenon A, Ladraa S, Hoguin C, Chapelle C, Yamaguchi J, Cassaca R, Zerbib L, Magassa S, Morin G, Asnafi V, Villarese P, Kaltenbach S, Fraitag S, Duong JP, Broissand C, Boccara O, Soupre V, Bonnotte B, Chopinet C, Mirault T, Legendre C, Guibaud L, Canaud G. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. Science Translational Medicine. 2021;13:614. doi: 10.1126/scitranslmed.abg0809.
    1. Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T, Russo M, Cancelliere C, Zecchin D, Mazzucchelli L, Sasazuki T, Shirasawa S, Geuna M, Frattini M, Baselga J, Gallicchio M, Biffo S, Bardelli A. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. The Journal of Clinical Investigation. 2010;120:2858–2866. doi: 10.1172/JCI37539.
    1. Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nature Reviews. Clinical Oncology. 2021;18:35–55. doi: 10.1038/s41571-020-0408-9.
    1. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, Rutkowski P, Del Vecchio M, Gutzmer R, Mandala M, Thomas L, Demidov L, Garbe C, Hogg D, Liszkay G, Queirolo P, Wasserman E, Ford J, Weill M, Sirulnik LA, Jehl V, Bozón V, Long GV, Flaherty K. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. The Lancet. Oncology. 2017;18:435–445. doi: 10.1016/S1470-2045(17)30180-8.
    1. Freixo C, Ferreira V, Martins J, Almeida R, Caldeira D, Rosa M, Costa J, Ferreira J. Efficacy and safety of sirolimus in the treatment of vascular anomalies: A systematic review. Journal of Vascular Surgery. 2020;71:318–327. doi: 10.1016/j.jvs.2019.06.217.
    1. Fritsche LG, Gruber SB, Wu Z, Schmidt EM, Zawistowski M, Moser SE, Blanc VM, Brummett CM, Kheterpal S, Abecasis GR, Mukherjee B. Association of Polygenic Risk Scores for Multiple Cancers in a Phenome-wide Study: Results from The Michigan Genomics Initiative. American Journal of Human Genetics. 2018;102:1048–1061. doi: 10.1016/j.ajhg.2018.04.001.
    1. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell. 2017;170:605–635. doi: 10.1016/j.cell.2017.07.029.
    1. Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D, Group C. The CARE guidelines: consensus-based clinical case reporting guideline development. BMJ Case Reports. 2013;2013:bcr2013201554. doi: 10.1136/bcr-2013-201554.
    1. Gallagher CS, Mäkinen N, Harris HR, Rahmioglu N, Uimari O, Cook JP, Shigesi N, Ferreira T, Velez-Edwards DR, Edwards TL, Mortlock S, Ruhioglu Z, Day F, Becker CM, Karhunen V, Martikainen H, Järvelin MR, Cantor RM, Ridker PM, Terry KL, Buring JE, Gordon SD, Medland SE, Montgomery GW, Nyholt DR, Hinds DA, Tung JY, Perry JRB, Lind PA, Painter JN, Martin NG, Morris AP, Chasman DI, Missmer SA, Zondervan KT, Morton CC, 23andMe Research Team Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. Nature Communications. 2019;10:4857. doi: 10.1038/s41467-019-12536-4.
    1. Hong DS, Bowles DW, Falchook GS, Messersmith WA, George GC, O’Bryant CL, Vo ACH, Klucher K, Herbst RS, Eckhardt SG, Peterson S, Hausman DF, Kurzrock R, Jimeno A. A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clinical Cancer Research. 2012;18:4173–4182. doi: 10.1158/1078-0432.CCR-12-0714.
    1. Hucthagowder V, Shenoy A, Corliss M, Vigh-Conrad KA, Storer C, Grange DK, Cottrell CE. Utility of clinical high-depth next generation sequencing for somatic variant detection in the PIK3CA-related overgrowth spectrum. Clinical Genetics. 2017;91:79–85. doi: 10.1111/cge.12819.
    1. Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, Falchook GS, Tsimberidou AM, Stepanek VM, Moulder SL, Lee JJ, Luthra R, Zinner RG, Broaddus RR, Wheler JJ, Kurzrock R. Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors. Cell Reports. 2014;6:377–387. doi: 10.1016/j.celrep.2013.12.035.
    1. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H, Ebbesen SH, Ainscough BJ, Ramu A, Iyer G, Shah RH, Huynh T, Mino-Kenudson M, Sgroi D, Isakoff S, Thabet A, Elamine L, Solit DB, Lowe SW, Quadt C, Peters M, Derti A, Schegel R, Huang A, Mardis ER, Berger MF, Baselga J, Scaltriti M. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature. 2015;518:240–244. doi: 10.1038/nature13948.
    1. Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, Savage HM, Sampath D, Salphati L, Lin RS, Jin H, Parmar H, Hsu JY, Von Hoff DD, Baselga J. Phase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors. Cancer Discovery. 2017;7:704–715. doi: 10.1158/-16-1080.
    1. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, Middleton MR, Berlin J, Schuler M, Gil-Martin M, Rugo HS, Seggewiss-Bernhardt R, Huang A, Bootle D, Demanse D, Blumenstein L, Coughlin C, Quadt C, Baselga J. Phosphatidylinositol 3-Kinase α-Selective Inhibition With Alpelisib (BYL719) in PIK3CA-Altered Solid Tumors: Results From the First-in-Human Study. Journal of Clinical Oncology. 2018;36:1291–1299. doi: 10.1200/JCO.2017.72.7107.
    1. Limaye N, Kangas J, Mendola A, Godfraind C, Schlögel MJ, Helaers R, Eklund L, Boon LM, Vikkula M. Somatic Activating PIK3CA Mutations Cause Venous Malformation. American Journal of Human Genetics. 2015;97:914–921. doi: 10.1016/j.ajhg.2015.11.011.
    1. Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovée JVMG, Rialon KL, Guevara CJ, Alomari AI, Greene AK, Fishman SJ, Kozakewich HPW, Maclellan RA, Mulliken JB, Rahbar R, Spencer SA, Trenor CC, Upton J, Zurakowski D, Perkins JA, Kirsh A, Bennett JT, Dobyns WB, Kurek KC, Warman ML, McCarroll SA, Murillo R. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. The Journal of Pediatrics. 2015;166:1048–1054. doi: 10.1016/j.jpeds.2014.12.069.
    1. Mayer IA, Abramson VG, Formisano L, Balko JM, Estrada MV, Sanders ME, Juric D, Solit D, Berger MF, Won HH, Li Y, Cantley LC, Winer E, Arteaga CL. A Phase Ib Study of Alpelisib (BYL719), A PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clinical Cancer Research. 2017;23:26–34. doi: 10.1158/1078-0432.CCR-16-0134.
    1. Mustjoki S, Young NS. Somatic Mutations in “Benign” Disease. The New England Journal of Medicine. 2021;384:2039–2052. doi: 10.1056/NEJMra2101920.
    1. Perkins JA, Manning SC, Tempero RM, Cunningham MJ, Edmonds JL, Hoffer FA, Egbert MA. Lymphatic malformations: review of current treatment. Otolaryngology--Head and Neck Surgery. 2010;142:795–803. doi: 10.1016/j.otohns.2010.02.026.
    1. Qiu QC, Wang L, Jin SS, Liu GF, Liu J, Ma L, Mao RF, Ma YY, Zhao N, Chen M, Lin BY. CHI3L1 promotes tumor progression by activating TGF-β signaling pathway in hepatocellular carcinoma. Scientific Reports. 2018;8:15029. doi: 10.1038/s41598-018-33239-8.
    1. Rafnar T, Gunnarsson B, Stefansson OA, Sulem P, Ingason A, Frigge ML, Stefansdottir L, Sigurdsson JK, Tragante V, Steinthorsdottir V, Styrkarsdottir U, Stacey SN, Gudmundsson J, Arnadottir GA, Oddsson A, Zink F, Halldorsson G, Sveinbjornsson G, Kristjansson RP, Davidsson OB, Salvarsdottir A, Thoroddsen A, Helgadottir EA, Kristjansdottir K, Ingthorsson O, Gudmundsson V, Geirsson RT, Arnadottir R, Gudbjartsson DF, Masson G, Asselbergs FW, Jonasson JG, Olafsson K, Thorsteinsdottir U, Halldorsson BV, Thorleifsson G, Stefansson K. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nature Communications. 2018;9:3636. doi: 10.1038/s41467-018-05428-6.
    1. Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, Lightle R, Moore T, Shenkar R, Benavides C, Beaman MM, Müller-Fielitz H, Chen M, Mericko P, Yang J, Sung DC, Lawton MT, Ruppert JM, Schwaninger M, Körbelin J, Potente M, Awad IA, Marchuk DA, Kahn ML. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021;594:271–276. doi: 10.1038/s41586-021-03562-8.
    1. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JKV, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science (New York, N.Y.) 2004;304:554. doi: 10.1126/science.1096502.
    1. Sanders MGH, Pardo LM, Uitterlinden AG, Smith AM, Ginger RS, Nijsten T. The Genetics of Seborrheic Dermatitis: A Candidate Gene Approach and Pilot Genome-Wide Association Study. The Journal of Investigative Dermatology. 2018;138:991–993. doi: 10.1016/j.jid.2017.11.020.
    1. Sirois I, Aguilar-Mahecha A, Lafleur J, Fowler E, Vu V, Scriver M, Buchanan M, Chabot C, Ramanathan A, Balachandran B, Légaré S, Przybytkowski E, Lan C, Krzemien U, Cavallone L, Aleynikova O, Ferrario C, Guilbert M-C, Benlimame N, Saad A, Alaoui-Jamali M, Saragovi HU, Josephy S, O’Flanagan C, Hursting SD, Richard VR, Zahedi RP, Borchers CH, Bareke E, Nabavi S, Tonellato P, Roy J-A, Robidoux A, Marcus EA, Mihalcioiu C, Majewski J, Basik M. A Unique Morphological Phenotype in Chemoresistant Triple-Negative Breast Cancer Reveals Metabolic Reprogramming and PLIN4 Expression as A Molecular Vulnerability. Molecular Cancer Research. 2019;17:2492–2507. doi: 10.1158/1541-7786.MCR-19-0264.
    1. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics (Oxford, England) 2007;23:3251–3253. doi: 10.1093/bioinformatics/btm369.
    1. Vadivel CK, Gluud M, Torres-Rusillo S, Boding L, Willerslev-Olsen A, Buus TB, Nielsen TK, Persson JL, Bonefeld CM, Geisler C, Krejsgaard T, Fuglsang AT, Odum N, Woetmann A. JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL. Cancers. 2021;13:280. doi: 10.3390/cancers13020280.
    1. Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, Blanc E, Johnson SC, Hoguin C, Boccara O, Sarnacki S, Boddaert N, Pannier S, Martinez F, Magassa S, Yamaguchi J, Knebelmann B, Merville P, Grenier N, Joly D, Cormier-Daire V, Michot C, Bole-Feysot C, Picard A, Soupre V, Lyonnet S, Sadoine J, Slimani L, Chaussain C, Laroche-Raynaud C, Guibaud L, Broissand C, Amiel J, Legendre C, Terzi F, Canaud G. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558:540–546. doi: 10.1038/s41586-018-0217-9.
    1. Zhang Q, Zhang P, Li B, Dang H, Jiang J, Meng L, Zhang H, Zhang Y, Wang X, Li Q, Wang Y, Liu C, Li F. The Expression of Perilipin Family Proteins can be used as Diagnostic Markers of Liposarcoma and to Differentiate Subtypes. Journal of Cancer. 2020;11:4081–4090. doi: 10.7150/jca.41736.

Source: PubMed

3
Subscribe