Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study

Donatella Panatto, Andrea Orsi, Bianca Bruzzone, Valentina Ricucci, Guido Fedele, Giorgio Reiner, Nadia Giarratana, Alexander Domnich, Giancarlo Icardi, Stx Study Group, Donatella Panatto, Andrea Orsi, Bianca Bruzzone, Valentina Ricucci, Guido Fedele, Giorgio Reiner, Nadia Giarratana, Alexander Domnich, Giancarlo Icardi, Stx Study Group

Abstract

Sentinox (STX) is an acid-oxidizing solution containing hypochlorous acid in spray whose virucidal activity against SARS-CoV-2 has been demonstrated. In this paper, results of a randomized controlled trial (RCT) on the efficacy of STX in reducing viral load in mild COVID-19 patients (NCT04909996) and a complementary in vitro study on its activity against different respiratory viruses are reported. In the RCT, 57 patients were randomized (1:1:1) to receive STX three (STX-3) or five (STX-5) times/day plus standard therapy or standard therapy only (controls). Compared with controls, the log10 load reduction in groups STX-3 and STX-5 was 1.02 (p = 0.14) and 0.18 (p = 0.80), respectively. These results were likely driven by outliers with extreme baseline viral loads. When considering subjects with baseline cycle threshold values of 20-30, STX-3 showed a significant (p = 0.016) 2.01 log10 reduction. The proportion of subjects that turned negative by the end of treatment (day 5) was significantly higher in the STX-3 group than in controls, suggesting a shorter virus clearance time. STX was safe and well-tolerated. In the in vitro study, ≥99.9% reduction in titers against common respiratory viruses was observed. STX is a safe device with large virucidal spectrum and may reduce viral loads in mild COVID-19 patients.

Keywords: COVID-19; SARS-CoV-2; Sentinox; efficacy; hypochlorous acid; randomized controlled trial; respiratory viruses; viral load.

Conflict of interest statement

D.P., A.O., B.B., V.R., A.D. and G.I. declare no conflict of interest. N.G. and G.R. are employees of APR Applied Pharma Research S.A. (Balerna, Switzerland). G.F. is a consultant of APR Applied Pharma Research S.A.

Figures

Figure 1
Figure 1
Flow chart of participants through the study.
Figure 2
Figure 2
Absolute change in viral loads in the intention-to-treat (ITT) population (n = 54), by study arm and day of follow-up (vertical bars represent standard errors).
Figure 3
Figure 3
Absolute change in viral loads in intention-to-treat (ITT) population by excluding subjects with high baseline viral loads (n = 15), by study arm and day of treatment (vertical bars represent standard errors).
Figure 4
Figure 4
Proportion of negativized subjects in the intention-to-treat (ITT) analysis, by negativization definition, study arm and day of follow-up.

References

    1. World Health Organization (WHO) Weekly Epidemiological Update on COVID-19—4 May 2022. [(accessed on 9 May 2022)]. Available online: .
    1. World Health Organization (WHO) Advice for the Public: Coronavirus Disease (COVID-19) [(accessed on 14 March 2022)]. Available online: .
    1. World Health Organization (WHO) Tracking SARS-CoV-2 Variants. [(accessed on 14 March 2022)]. Available online:
    1. The Lancet Infectious Diseases Unmet need for COVID-19 therapies in community settings. Lancet Infect. Dis. 2021;21:1471. doi: 10.1016/S1473-3099(21)00633-2.
    1. Dadashi M., Khaleghnejad S., Abedi Elkhichi P., Goudarzi M., Goudarzi H., Taghavi A., Vaezjalali M., Hajikhani B. COVID-19 and influenza co-infection: A systematic review and meta-analysis. Front. Med. 2021;8:681469. doi: 10.3389/fmed.2021.681469.
    1. Lansbury L., Lim B., Baskaran V., Lim W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020;81:266–275. doi: 10.1016/j.jinf.2020.05.046.
    1. Stowe J., Tessier E., Zhao H., Guy R., Muller-Pebody B., Zambon M., Andrews N., Ramsay M., Lopez Bernal J. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: A test-negative design. Int. J. Epidemiol. 2021;50:1124–1133. doi: 10.1093/ije/dyab081.
    1. Antimisiaris S.G., Marazioti A., Kannavou M., Natsaridis E., Gkartziou F., Kogkos G., Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug. Deliv. Rev. 2021;174:53–86. doi: 10.1016/j.addr.2021.01.019.
    1. Pilicheva B., Boyuklieva R. Can the nasal cavity help tackle COVID-19? Pharmaceutics. 2021;13:1612. doi: 10.3390/pharmaceutics13101612.
    1. Farrell N.F., Klatt-Cromwell C., Schneider J.S. Benefits and safety of nasal saline irrigations in a pandemic-washing COVID-19 away. JAMA Otolaryngol. Head Neck Surg. 2020;146:787–788. doi: 10.1001/jamaoto.2020.1622.
    1. Wang H., Liu Q., Hu J., Zhou M., Yu M.Q., Li K.Y., Xu D., Xiao Y., Yang J.Y., Lu Y.J., et al. Nasopharyngeal swabs are more sensitive than oropharyngeal swabs for COVID-19 diagnosis and monitoring the SARS-CoV-2 load. Front. Med. 2020;7:334. doi: 10.3389/fmed.2020.00334.
    1. Yoon J.G., Yoon J., Song J.Y., Yoon S.Y., Lim C.S., Seong H., Noh J.Y., Cheong H.J., Kim W.J. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020;35:e195. doi: 10.3346/jkms.2020.35.e195.
    1. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x.
    1. Hou Y.J., Okuda K., Edwards C.E., Martinez D.R., Asakura T., Dinnon K.H., 3rd, Kato T., Lee R.E., Yount B.L., Mascenik T.M., et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182:429–446. doi: 10.1016/j.cell.2020.05.042.
    1. Kawasuji H., Takegoshi Y., Kaneda M., Ueno A., Miyajima Y., Kawago K., Fukui Y., Yoshida Y., Kimura M., Yamada H., et al. Transmissibility of COVID-19 depends on the viral load around onset in adult and symptomatic patients. PLoS ONE. 2020;15:e0243597. doi: 10.1371/journal.pone.0243597.
    1. Burton M.J., Clarkson J.E., Goulao B., Glenny A.M., McBain A.J., Schilder A.G., Webster K.E., Worthington H.V. Antimicrobial mouthwashes (gargling) and nasal sprays administered to patients with suspected or confirmed COVID-19 infection to improve patient outcomes and to protect healthcare workers treating them. Cochrane Database Syst. Rev. 2020;9:CD013627.
    1. Winchester S., John S., Jabbar K., John I. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection. J. Infect. 2021;83:237–279. doi: 10.1016/j.jinf.2021.05.009.
    1. Guenezan J., Garcia M., Strasters D., Jousselin C., Lévêque N., Frasca D., Mimoz O. Povidone iodine mouthwash, gargle, and nasal spray to reduce nasopharyngeal viral load in patients with COVID-19: A randomized clinical trial. JAMA Otolaryngol. Head Neck Surg. 2021;147:400–401. doi: 10.1001/jamaoto.2020.5490.
    1. Zarabanda D., Vukkadala N., Phillips K.M., Qian Z.J., Mfuh K.O., Hatter M.J., Lee I.T., Rao V.K., Hwang P.H., Domb G., et al. The effect of povidone-iodine nasal spray on nasopharyngeal SARS-CoV-2 viral load: A randomized control trial. Laryngoscope. 2021 doi: 10.1002/lary.29935.
    1. Block M.S., Rowan B.G. Hypochlorous acid: A review. J. Oral. Maxillofac. Surg. 2020;78:1461–1466. doi: 10.1016/j.joms.2020.06.029.
    1. Kim H.J., Lee J.G., Kang J.W., Cho H.J., Kim H.S., Byeon H.K., Yoon J.H. Effects of a low concentration hypochlorous acid nasal irrigation solution on bacteria, fungi, and virus. Laryngoscope. 2008;118:1862–1867. doi: 10.1097/MLG.0b013e31817f4d34.
    1. Hatanaka N., Yasugi M., Sato T., Mukamoto M., Yamasaki S. Hypochlorous acid solution is a potent antiviral agent against SARS-CoV-2. J. Appl. Microbiol. 2022;132:1496–1502. doi: 10.1111/jam.15284.
    1. Liao L.B., Chen W.M., Xiao X.M. The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J. Food Eng. 2007;78:1326–1332. doi: 10.1016/j.jfoodeng.2006.01.004.
    1. Schneider L.A., Korber A., Grabbe S., Dissemond J. Influence of pH on wound-healing: A new perspective for wound-therapy? Arch. Dermatol. Res. 2007;298:413–420. doi: 10.1007/s00403-006-0713-x.
    1. Giarratana N., Rajan B., Kamala K., Mendenhall M., Reiner G. A sprayable Acid-Oxidizing solution containing hypochlorous acid (AOS2020) efficiently and safely inactivates SARS-Cov-2: A new potential solution for upper respiratory tract hygiene. Eur. Arch. Otorhinolaryngol. 2021;278:3099–3103. doi: 10.1007/s00405-021-06644-5.
    1. NCT04909996. [(accessed on 14 March 2022)]; Available online: .
    1. Schulz K.F., Altman D.G., Moher D., CONSORT Group CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c322. doi: 10.1136/bmj.c332.
    1. World Health Organization (WHO) Living Guidance for Clinical Management of COVID-19. [(accessed on 14 March 2022)]. Available online: .
    1. NEJM Procedure: Collection of Nasopharyngeal Specimens with the Swab Technique. [(accessed on 14 March 2022)]. Available online: .
    1. Seegene Inc. Allplex 2019-nCoV Assay (Version 2.2; 15 April 2021) (Cat no. RP10250X/RP10252W). Instructions for Use. [(accessed on 14 March 2022)]; Available online: .
    1. Domnich A., De Pace V., Pennati B.M., Caligiuri P., Varesano S., Bruzzone B., Orsi A. Evaluation of extraction-free RT-qPCR methods for SARS-CoV-2 diagnostics. Arch. Virol. 2021;166:2825–2828. doi: 10.1007/s00705-021-05165-0.
    1. Jefferson T., Spencer E.A., Brassey J., Heneghan C. Viral cultures for coronavirus sisease 2019 infectivity assessment: A systematic review. Clin. Infect. Dis. 2021;73:e3884–e3899. doi: 10.1093/cid/ciaa1764.
    1. Chang M.C., Hur J., Park D. Interpreting the COVID-19 test results: A guide for physiatrists. Am. J. Phys. Med. Rehabil. 2020;99:583–585. doi: 10.1097/PHM.0000000000001471.
    1. Esteve C., Catherine F.X., Chavanet P., Blot M., Piroth L. How should a positive PCR test result for COVID-19 in an asymptomatic individual be interpreted and managed? Med. Mal. Infect. 2020;50:633–638. doi: 10.1016/j.medmal.2020.09.014.
    1. Clonit S.R.L. Quanty COVID-19v2. [(accessed on 14 March 2022)]. Available online:
    1. Liotti F.M., Menchinelli G., Marchetti S., Morandotti G.A., Sanguinetti M., Posteraro B., Cattani P. Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. Eur. J. Clin. Microbiol. Infect. Dis. 2021;40:269–277. doi: 10.1007/s10096-020-04025-0.
    1. Saraiello A., Ferrentino F., Cuomo N., Grimaldi M., Falco E., Raffone M., Di Spirito A., Melillo N., Montanino G., Guarino V., et al. Correlation between cycle threshold and viral load through comparison of RT-PCR qualitative versus quantitative assay for SARS-CoV-2. Microbiol. Med. 2021;36:9999. doi: 10.4081/mm.2021.9999.
    1. Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 2016;5:85–86. doi: 10.5501/wjv.v5.i2.85.
    1. Jin X., Ren J., Li R., Gao Y., Zhang H., Li J., Zhang J., Wang X., Wang G. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986. doi: 10.1016/j.eclinm.2021.100986.
    1. Yu M.S., Kim B.H., Kang S.H., Lim D.J. Low-concentration hypochlorous acid nasal irrigation for chronic sinonasal symptoms: A prospective randomized placebo-controlled study. Eur. Arch. Otorhinolaryngol. 2017;274:1527–1533. doi: 10.1007/s00405-016-4387-5.
    1. Jiang R.S., Liang K.L. Effect of hypochlorous acid nasal spray as an adjuvant therapy after functional endoscopic sinus surgery. Am. J. Otolaryngol. 2022;43:103264. doi: 10.1016/j.amjoto.2021.103264.
    1. Kim H.C., Kim D.K., Kim J.S., Lee H.J., Bae M.R., Choi W.R., Jang Y.J. Hypochlorous acid versus saline nasal irrigation in allergic rhinitis: A multicenter, randomized, double-blind, placebo-controlled study. Am. J. Rhinol. Allergy. 2022;36:129–134. doi: 10.1177/19458924211029428.
    1. Cho H.J., Min H.J., Chung H.J., Park D.Y., Seong S.Y., Yoon J.H., Lee J.G., Kim C.H. Improved outcomes after low-concentration hypochlorous acid nasal irrigation in pediatric chronic sinusitis. Laryngoscope. 2016;126:791–795. doi: 10.1002/lary.25605.
    1. Sender R., Bar-On Y.M., Gleizer S., Bernshtein B., Flamholz A., Phillips R., Milo R. The total number and mass of SARS-CoV-2 virions. Proc. Natl. Acad. Sci. USA. 2021;118:e2024815118. doi: 10.1073/pnas.2024815118.
    1. Smith A.P., Moquin D.J., Bernhauerova V., Smith A.M. Influenza virus infection model with density dependence supports biphasic viral decay. Front. Microbiol. 2018;9:1554. doi: 10.3389/fmicb.2018.01554.
    1. Contreras C., Newby J.M., Hillen T. Personalized virus load curves for acute viral infections. Viruses. 2021;13:1815. doi: 10.3390/v13091815.
    1. Italian National Institute of Health Prevalence and Distribution of SARS-CoV-2 Variants of Public Health Interest in Italy. [(accessed on 14 March 2022)]. Available online: .
    1. Luo C.H., Morris C.P., Sachithanandham J., Amadi A., Gaston D.C., Li M., Swanson N.J., Schwartz M., Klein E.Y., Pekosz A., et al. Infection with the SARS-CoV-2 Delta variant is associated with higher recovery of infectious virus compared to the Alpha variant in both unvaccinated and vaccinated individuals. Clin. Infect. Dis. 2021:ciab986. doi: 10.1093/cid/ciab986.
    1. Han M.S., Byun J.H., Cho Y., Rim J.H. RT-PCR for SARS-CoV-2: Quantitative versus qualitative. Lancet Infect. Dis. 2021;21:165. doi: 10.1016/S1473-3099(20)30424-2.
    1. Marc A., Kerioui M., Blanquart F., Bertrand J., Mitjà O., Corbacho-Monné M., Marks M., Guedj J. Quantifying the relationship between SARS-CoV-2 viral load and infectiousness. Elife. 2021;10:e69302. doi: 10.7554/eLife.69302.
    1. Higgins T.S., Wu A.W., Ting J.Y. SARS-CoV-2 nasopharyngeal swab testing-false-negative results from a pervasive anatomical misconception. JAMA Otolaryngol. Head Neck Surg. 2020;146:993–994. doi: 10.1001/jamaoto.2020.2946.
    1. Snapinn S.M., Jiang Q., Iqlewicz B. Informative noncompliance in endpoint trials. Curr. Control. Trials Cardiovasc. Med. 2004;5:5. doi: 10.1186/1468-6708-5-5.
    1. Freedman L.S. The effect of partial noncompliance on the power of a clinical trial. Control. Clin. Trials. 1990;11:157–168. doi: 10.1016/0197-2456(90)90010-Y.

Source: PubMed

3
Subscribe