Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety

Stephen D Patterson, Luke Hughes, Stuart Warmington, Jamie Burr, Brendan R Scott, Johnny Owens, Takashi Abe, Jakob L Nielsen, Cleiton Augusto Libardi, Gilberto Laurentino, Gabriel Rodrigues Neto, Christopher Brandner, Juan Martin-Hernandez, Jeremy Loenneke, Stephen D Patterson, Luke Hughes, Stuart Warmington, Jamie Burr, Brendan R Scott, Johnny Owens, Takashi Abe, Jakob L Nielsen, Cleiton Augusto Libardi, Gilberto Laurentino, Gabriel Rodrigues Neto, Christopher Brandner, Juan Martin-Hernandez, Jeremy Loenneke

Abstract

The current manuscript sets out a position stand for blood flow restriction (BFR) exercise, focusing on the methodology, application and safety of this mode of training. With the emergence of this technique and the wide variety of applications within the literature, the aim of this position stand is to set out a current research informed guide to BFR training to practitioners. This covers the use of BFR to enhance muscular strength and hypertrophy via training with resistance and aerobic exercise and preventing muscle atrophy using the technique passively. The authorship team for this article was selected from the researchers focused in BFR training research with expertise in exercise science, strength and conditioning and sports medicine.

Keywords: BFR exercise; blood flow restriction exercise; kaatsu training; occlusion training; resistance training.

References

    1. Abe T., Beekley M. D., Hinata S., Koizumi K., Sato Y. (2005a). Day-to-day change in muscle strength and MRI-measured skeletal muscle size during 7 days KAATSU resistance training: a case study. Int. J. KAATSU Train. Res. 1 71–76. 10.3806/ijktr.1.71
    1. Abe T., Kawamoto K., Yasuda T., Kearns C. F., Midorikawa T., Sato Y. (2005b). Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int. J. KAATSU Train. Res. 1 19–23. 10.3806/ijktr.1.19
    1. Abe T., Yasuda T., Midorikawa T., Sato Y., Kearns C. F., Inoue K., et al. (2005c). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. Int. J. KAATSU Train. Res. 1 6–12. 10.3806/ijktr.1.6
    1. Abe T., Kearns C. F., Sato Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, KAATSU-walk training. J. Appl. Physiol. 100 1460–1466. 10.1152/japplphysiol.01267.2005
    1. Abe T., Fujita S., Nakajima T., Sakamaki M., Ozaki H., Ogasawara R., et al. (2010a). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO 2max in young men. J. Sports Sci. Med. 9 452–458.
    1. Abe T., Sakamaki M., Fujita S., Ozaki H., Sugaya M., Sato Y., et al. (2010b). Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J. Geriatr. Phys. Ther. 33 34–40.
    1. Alfadda A. A., Sallam R. M. (2012). Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012:936486. 10.1155/2012/936486
    1. Allen D. G., Whitehead N. P., Yeung E. W. (2005). Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J. Physiol. 567(Pt 3), 723–735. 10.1113/jphysiol.2005.091694
    1. Anderson F. A., Spencer F. A. (2003). Risk factors for venous thromboembolism. Circulation 107(23 Suppl. 1), I9–I16.
    1. Barbalho M., Rocha A. C., Seus T. L., Raiol R., Del Vecchio F. B., Coswig V. S. (2018). Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin. Rehabil. 33 233–240. 10.1177/0269215518801440
    1. Bjornsen T., Wernbom M., Lovstad A. T., Paulsen G., DSouza R. F., Cameron-Smith D., et al. (2018). Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. J. Appl. Physiol. 126 578–592. 10.1152/japplphysiol.00397.2018
    1. Blaisdell F. W. (2002). The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc. Surg. 10 620–630. 10.1016/s0967-2109(02)00070-4
    1. Blazevich A. J., Gill N. D., Deans N., Zhou S. (2017). Lack of human muscle architectural adaptation after short-term strength training. Muscle Nerve 35 78–86. 10.1002/mus.20666
    1. Brandner C. R., Kidgell D. J., Warmington S. A. (2015). Unilateral bicep curl hemodynamics: low-pressure continuous vs high-pressure intermittent blood flow restriction. Scand. J. Med. Sci. Sports 25 770–777. 10.1111/sms.12297
    1. Buckner S. L., Dankel S. J., Counts B. R., Jessee M. B., Mouser J. G., Mattocks K. T., et al. (2017). Influence of cuff material on blood flow restriction stimulus in the upper body. J. Physiol. Sci. 67 207–215. 10.1007/s12576-016-0457-0
    1. Burgomaster K. A., Moore D. R., Schofield L. M., Phillips S. M., Sale D. G., Gibala M. J. (2003). Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med. Sci. Sports Exerc. 35 1203–1208. 10.1249/01.mss.0000074458.71025.71
    1. Centner C., Wiegel P., Gollhofer A., König D. (2018a). Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Med. 49 95–108. 10.1007/s40279-018-0994-1
    1. Centner C., Zdzieblik D., Dressler P., Fink B., Gollhofer A., Konig D. (2018b). Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects. Free Radic. Res. 52 446–454. 10.1080/10715762.2018.1440293
    1. Cheng Y.-J., Chien C. T., Chen C. F. (2003). Oxidative stress in bilateral total knee replacement, under ischaemic tourniquet. Bone Joint J. 85 679–682. 10.1302/0301-620x.85b5.13539
    1. Christiansen D., Murphy R. M., Bangsbo J., Stathis C. G., Bishop D. J. (2018). Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol. 223:e13045. 10.1111/apha.13045
    1. Cionac Florescu S., Anastase D. M., Munteanu A. M., Stoica I. C., Antonescu D. (2013). Venous thromboembolism following major orthopedic surgery. Maedica 8 189–194.
    1. Clark B. C., Manini T. M. (2016). Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 27 e1–e2. 10.1097/JSM.0000000000000309
    1. Clark B. C., Manini T. M., Hoffman R. L., Williams P. S., Guiler M. K., Knutson M. J., et al. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand. J. Med. Sci. Sports 21 653–662. 10.1111/j.1600-0838.2010.01100.x
    1. Clarkson M. J., Conway L., Warmington S. A. (2017a). Blood flow restriction walking and physical function in older adults: a randomized control trial. J. Sci. Med. Sport 20 1041–1046. 10.1016/j.jsams.2017.04.012
    1. Clarkson M. J., Fraser S. F., Bennett P. N., McMahon L. P., Brumby C., Warmington S. A. (2017b). Efficacy of blood flow restriction exercise during dialysis for end stage kidney disease patients: protocol of a randomised controlled trial. BMC Nephrol. 18:294. 10.1186/s12882-017-0713-4
    1. Clarkson P. M., Byrnes W. C., McCormick K. M., Turcotte L. P., White J. S. (1986). Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. Int. J. Sports Med. 7 152–155. 10.1055/s-2008-1025753
    1. (2016). Identifier NCT027633488 Blood Flow Restriction Training Following Total Knee Arthroplasty; 2016 June 14). Bethesda, MD: National Library of Medicine.
    1. Conceição M. S., Junior E. M. M., Telles G. D., Libardi C. A., Castro A., Andrade A. L. L., et al. (2019). Augmented anabolic responses after 8-wk cycling with blood flow restriction. Med. Sci. Sports Exerc. 51 84–93. 10.1249/MSS.0000000000001755
    1. Cook S. B., Clark B. C., Ploutz-Snyder L. L. (2007). Effects of exercise load and blood-flow restriction on skeletal muscle function. Med. Sci. Sports Exerc. 39 1708–1713. 10.1249/mss.0b013e31812383d6
    1. Cook S. B., LaRoche D. P., Villa M. R., Barile H., Manini T. M. (2017). Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp. Gerontol. 99 138–145. 10.1016/j.exger.2017.10.004
    1. Cook S. B., Murphy B. G., Labarbera K. E. (2013). Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med. Sci. Sports Exerc. 45 67–74. 10.1249/MSS.0b013e31826c6fa8
    1. Counts B. R., Dankel S. J., Barnett B. E., Kim D., Mouser J. G., Allen K. M., et al. (2016). Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 53 438–445. 10.1002/mus.24756
    1. Credeur D. P., Hollis B. C., Welsch M. A. (2010). Effects of handgrip training with venous restriction on brachial artery vasodilation. Med. Sci. Sports Exerc. 42 1296–1302. 10.1249/MSS.0b013e3181ca7b06
    1. Crenshaw A. G., Hargens A. R., Gershuni D. H., Rydevik B. (1988). Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop. Scand. 59 447–451. 10.3109/17453678809149401
    1. Cumming K. T., Paulsen G., Wernbom M., Ugelstad I., Raastad T. (2014). Acute response and subcellular movement of HSP27, alphaB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol. 211 634–646. 10.1111/apha.12305
    1. Cushman M. (2007). Epidemiology and risk factors for venous thrombosis. Semin. Hematol. 44 62–69. 10.1053/j.seminhematol.2007.02.004
    1. Damas F., Phillips S. M., Lixandrão M. E., Vechin F. C., Libardi C. A., Roschel H., et al. (2016). Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur. J. Appl. Physiol. 116 49–56. 10.1007/s00421-015-3243-4
    1. Dankel S. J., Jessee M. B., Abe T., Loenneke J. P. (2016). The effects of blood flow restriction on upper-body musculature located distal and proximal to applied pressure. Sports Med. 46 23–33. 10.1007/s40279-015-0407-7
    1. de Jong A. T., Womack C. J., Perrine J. A., Franklin B. A. (2006). Hemostatic responses to resistance training in patients with coronary artery disease. J. Cardiopulm. Rehabil. 26 80–83. 10.1097/00008483-200603000-00005
    1. de Oliveira M. F. M., Caputo F., Corvino R. B., Denadai B. S. (2016). Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand. J. Med. Sci. Sports 26 1017–1025. 10.1111/sms.12540
    1. Domingos E., Polito M. D. (2018). Blood pressure response between resistance exercise with and without blood flow restriction: a systematic review and meta-analysis. Life Sci. 209 122–131. 10.1016/j.lfs.2018.08.006
    1. Downs M. E., Hackney K. J., Martin D., Caine T. L., Cunningham D., O’Connor D. P., et al. (2014). Acute vascular and cardiovascular responses to blood flow-restricted exercise. Med. Sci. Sports Exerc. 46 1489–1497. 10.1249/MSS.0000000000000253
    1. Ellefsen S., Hammarstrom D., Strand T. A., Zacharoff E., Whist J. E., Rauk I., et al. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 R767–R779. 10.1152/ajpregu.00497.2014
    1. El-Sayed M. S. (1993). Fibrinolytic and hemostatic parameter response after resistance exercise. Med. Sci. Sports Exerc. 25 597–602.
    1. Fahs C. A., Loenneke J. P., Thiebaud R. S., Rossow L. M., Kim D., Abe T., et al. (2015). Muscular adaptations to fatiguing exercise with and without blood flow restriction. Clin. Physiol. Funct. Imaging 35 167–176. 10.1111/cpf.12141
    1. Fahs C. A., Rossow L. M., Loenneke J. P., Thiebaud R. S., Kim D., Bemben D. A., et al. (2012). Effect of different types of lower body resistance training on arterial compliance and calf blood flow. Clin. Physiol. Funct. Imaging 32 45–51. 10.1111/j.1475-097X.2011.01053.x
    1. Farup J., de Paoli F., Bjerg K., Riis S., Ringgard S., Vissing K. (2015). Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand. J. Med. Sci. Sports 25 754–763. 10.1111/sms.12396
    1. Fleck S. J., Kraemer W. J. (2004). Designing Resistance Training Programs, 3rd Edn Champaign, IL: Human Kinetics.
    1. Fry C. S., Glynn E. L., Drummond M. J., Timmerman K. L., Fujita S., Abe T., et al. (2010). Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J. Appl. Physiol. 108 1199–1209. 10.1152/japplphysiol.01266.2009
    1. Fujita T., Brechue W., Kurita K., Sato Y., Abe T. (2008). Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int. J. KAATSU Train. Res. 4 1–8. 10.3806/ijktr.4.1
    1. Furie B., Furie C. (2008). Mechanisms of thrombus formation. N. Engl. J. Med. 359 938–949. 10.1056/nejmra0801082
    1. Garten R. S., Goldfarb A., Crabb B., Waller J. (2015). The impact of partial vascular occlusion on oxidative stress markers during resistance exercise. Int. J. Sports Med. 36 542–549. 10.1055/s-0034-1396827
    1. Goldfarb A. H., Garten R. S., Chee P. D., Cho C., Reeves G. V., Hollander D. B., et al. (2008). Resistance exercise effects on blood glutathione status and plasma protein carbonyls: influence of partial vascular occlusion. Eur. J. Appl. Physiol. 104 813–819. 10.1007/s00421-008-0836-1
    1. Gorgey A. S., Timmons M. K., Dolbow D. R., Bengel J., Fugate-Laus K. C., Michener L. A., et al. (2016). Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur. J. Appl. Physiol. 116 1231–1244. 10.1007/s00421-016-3385-z
    1. Grant J. D., Stevens S. M., Woller S. C., Lee E. W., Kee S. T., Liu D. M., et al. (2012). Diagnosis and management of upper extremity deep-vein thrombosis in adults. Thromb. Haemost. 108 1097–1108. 10.1160/TH12-05-0352
    1. He F., Li J., Liu Z., Chuang C. C., Yang W., Zuo L. (2016). Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 7:486 10.3389/fphys.2016.00486
    1. Heit J. A. (2015). Epidemiology of venous thromboembolism. Nat. Rev. Cardiol. 12 464–474. 10.1038/nrcardio.2015.83
    1. Heit J. A., Kobbervig C. E., James A. H., Petterson T. M., Bailey K. R., Melton L. J., III (2005). Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. Ann. Intern. Med. 143 697–706.
    1. Hogan T. S. (2009). Exercise-induced reduction in systemic vascular resistance: a covert killer and an unrecognised resuscitation challenge? Med. Hypotheses 73 479–484. 10.1016/j.mehy.2009.06.021
    1. Hughes L., Paton B., Rosenblatt B., Gissane C., Patterson S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. Br. J. Sports Med. 51 1003–1011. 10.1136/bjsports-2016-097071
    1. Hunt J. E., Galea D., Tufft G., Bunce D., Ferguson R. A. (2013). Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J. Appl. Physiol. 115 403–411. 10.1152/japplphysiol.00040.2013
    1. Hunt J. E., Walton L. A., Ferguson R. A. (2012). Brachial artery modifications to blood flow-restricted handgrip training and detraining. J. Appl. Physiol. 112 956–961. 10.1152/japplphysiol.00905.2011
    1. Iida H., Kurano M., Takano H., Kubota N., Morita T., Meguro K., et al. (2007). Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur. J. Appl. Physiol. 100 275–285. 10.1007/s00421-007-0430-y
    1. Iida H., Nakajima T., Kurano M., Yasuda T., Sakamaki M., Sato Y., et al. (2011). Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clin. Physiol. Funct. Imaging 31 472–476. 10.1111/j.1475-097X.2011.01044.x
    1. Iversen E., Rstad V. (2010). Low-load ischemic exercise-induced rhabdomyolysis. Clin. J. Sport Med. 20 218–219. 10.1097/jsm.0b013e3181df8d10
    1. Jeffries O., Waldron M., Pattison J. R., Patterson S. D. (2018). Enhanced local skeletal muscle oxidative capacity and microvascular blood flow following 7-day ischemic preconditioning in healthy humans. Front. Physiol. 9:463. 10.3389/fphys.2018.00463
    1. Jessee M. B., Buckner S. L., Dankel S. J., Counts B. R., Abe T., Loenneke J. P. (2016). The influence of cuff width, sex, and race on arterial occlusion: implications for blood flow restriction research. Sports Med. 46 913–921. 10.1007/s40279-016-0473-5
    1. Jessee M. B., Dankel S. J., Buckner S. L., Mouser J. G., Mattocks K. T., Loenneke J. P. (2017). The cardiovascular and perceptual response to very low load blood flow restricted exercise. Int. J. Sports Med. 38 597–603. 10.1055/s-0043-109555
    1. Jones H., Hopkins N., Bailey T. G., Green D. J., Cable N. T., Thijssen D. H. (2014). Seven-day remote ischemic preconditioning improves local and systemic endothelial function and microcirculation in healthy humans. Am. J. Hypertens. 27 918–925. 10.1093/ajh/hpu004
    1. Jones H., Nyakayiru J., Bailey T. G., Green D. J., Cable N. T., Sprung V. S., et al. (2015). Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. Eur. J. Prev. Cardiol. 22 1083–1087. 10.1177/2047487314547657
    1. Kacin A., Rosenblatt B., Zargi T. G., Biswas A. (2015). Safety considerations with blood flow restricted resistance training. Varna Uporaba Vadbe Z Zmanjšanim Pretokom Krvi. Ann. Kinesiol. 6 3–26.
    1. Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sports 21 e231–e241. 10.1111/j.1600-0838.2010.01260.x
    1. Kang D. Y., Kim H. S., Lee K. S., Kim Y. M. (2015). The effects of bodyweight-based exercise with blood flow restriction on isokinetic knee muscular function and thigh circumference in college students. J. Phys. Ther. Sci. 27 2709–2712. 10.1589/jpts.27.2709
    1. Kim D., Loenneke J. P., Ye X., Bemben D. A., Beck T. W., Larson R. D., et al. (2017). Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve 56 E126–E133. 10.1002/mus.25626
    1. Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T., et al. (2007). Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 27 1403–1410. 10.1161/ATVBAHA.107.143578
    1. Klatsky A. L., Armstrong M. A., Poggi J. (2000). Risk of pulmonary embolism and/or deep venous thrombosis in Asian-Americans. Am. J. Cardiol. 85 1334–1337. 10.1016/s0002-9149(00)00766-9
    1. Kraemer W. J., Ratamess N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Med. Sci. Sports Exerc. 36 674–688. 10.1249/01.mss.0000121945.36635.61
    1. Kubota A., Sakuraba K., Koh S., Ogura Y., Tamura Y. (2011). Blood flow restriction by low compressive force prevents disuse muscular weakness. J. Sci. Med. Sport 14 95–99. 10.1016/j.jsams.2010.08.007
    1. Kubota A., Sakuraba K., Sawaki K., Sumide T., Tamura Y. (2008). Prevention of disuse muscular weakness by restriction of blood flow. Med. Sci. Sports Exerc. 40 529–534. 10.1249/MSS.0b013e31815ddac6
    1. Kucher N. (2011). Deep-vein thrombosis of the upper extremities. N. Engl. J. Med. 364 861–869. 10.1056/nejmcp1008740
    1. Kumagai K., Kurobe K., Zhong H., Loenneke J. P., Thiebaud R. S., Ogita F., et al. (2012). Cardiovascular drift during low intensity exercise with leg blood flow restriction. Acta Physiol. Hung. 99 392–399. 10.1556/APhysiol.99.2012.4.3
    1. Ladlow P., Coppack R. J., Dharm-Datta S., Conway D., Sellon E., Patterson S. D., et al. (2018). Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: a single-blind randomized controlled trial. Front. Physiol. 9:1269. 10.3389/fphys.2018.01269
    1. Larkin K. A., Macneil R. G., Dirain M., Sandesara B., Manini T. M., Buford T. W. (2012). Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med. Sci. Sports Exerc. 44 2077–2083. 10.1249/MSS.0b013e3182625928
    1. Laurentino G., Ugrinowitsch C., Aihara A. Y., Fernandes A. R., Parcell A. C., Ricard M., et al. (2008). Effects of strength training and vascular occlusion. Int. J. Sports Med. 29 664–667. 10.1055/s-2007-989405
    1. Laurentino G. C., Loenneke J. P., Teixeira E. L., Nakajima E., Iared W., Tricoli V. (2016). The effect of cuff width on muscle adaptations after blood flow restriction training. Med. Sci. Sports Exerc. 48 920–925. 10.1249/MSS.0000000000000833
    1. Libardi C. A., Catai A. M., Miquelini M., Borghi-Silva A., Minatel V., Alvarez I. F., et al. (2017). Hemodynamic responses to blood flow restriction and resistance exercise to muscular failure. Int. J. Sports Med. 38 134–140. 10.1055/s-0042-115032
    1. Libardi C. A., Chacon-Mikahil M. P., Cavaglieri C. R., Tricoli V., Roschel H., Vechin F. C., et al. (2015). Effect of concurrent training with blood flow restriction in the elderly. Int. J. Sports Med. 36 395–399. 10.1055/s-0034-1390496
    1. Lixandrão M. E., Ugrinowitsch C., Berton R., Vechin F. C., Conceição M. S., Damas F., et al. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood flow restriction: a systematic review and meta-analysis. Sports Med. 48 361–378. 10.1007/s40279-017-0795-y
    1. Lixandrao M. E., Ugrinowitsch C., Laurentino G., Libardi C. A., Aihara A. Y., Cardoso F. N., et al. (2015). Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur. J. Appl. Physiol. 115 2471–2480. 10.1007/s00421-015-3253-2
    1. Loenneke J. P., Allen K. M., Mouser J. G., Thiebaud R. S., Kim D., Abe T., et al. (2015). Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur. J. Appl. Physiol. 115 397–405. 10.1007/s00421-014-3030-7
    1. Loenneke J. P., Balapur A., Thrower A. D., Barnes J. T., Pujol T. J. (2011a). The perceptual responses to occluded exercise. Int. J. Sports Med. 32 181–184. 10.1055/s-0030-1268472
    1. Loenneke J. P., Fahs C. A., Wilson J. M., Bemben M. G. (2011b). Blood flow restriction: the metabolite/volume threshold theory. Med. Hypotheses 77 748–752. 10.1016/j.mehy.2011.07.029
    1. Loenneke J. P., Kearney M. L., Thrower A. D., Collins S., Pujol T. J. (2010). The acute response of practical occlusion in the knee extensors. J. Strength Cond. Res. 24 2831–2834. 10.1519/JSC.0b013e3181f0ac3a
    1. Loenneke J. P., Loprinzi P. D., Abe T., Thiebaud R. S., Allen K. M., Grant Mouser J., et al. (2016). Arm circumference influences blood pressure even when applying the correct cuff size: is a further correction needed? Int. J. Cardiol. 202 743–744. 10.1016/j.ijcard.2015.10.009
    1. Loenneke J. P., Thiebaud R. S., Fahs C. A., Rossow L. M., Abe T., Bemben M. G. (2013). Effect of cuff type on arterial occlusion. Clin. Physiol. Funct. Imaging 33 325–327. 10.1111/cpf.12035
    1. Loenneke J. P., Thiebaud R. S., Abe T. (2014a). Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand. J. Med. Sci. Sports 24 e415–e422. 10.1111/sms.12210
    1. Loenneke J. P., Thiebaud R. S., Fahs C. A., Rossow L. M., Abe T., Bemben M. G. (2014b). Blood flow restriction: effects of cuff type on fatigue and perceptual responses to resistance exercise. Acta Physiol. Hung. 101 158–166. 10.1556/APhysiol.101.2014.2.4
    1. Loenneke J. P., Balapur A., Thrower A. D., Barnes J., Pujol T. J. (2012a). Blood flow restriction reduces time to muscular failure. Eur. J. Sport Sci. 12 238–248.
    1. Loenneke J. P., Fahs C. A., Rossow L. M., Sherk V. D., Thiebaud R. S., Abe T., et al. (2012b). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112 2903–2912. 10.1007/s00421-011-2266-8
    1. Loenneke J. P., Fahs C. A., Thiebaud R. S., Rossow L. M., Abe T., Ye X., et al. (2012c). The acute muscle swelling effects of blood flow restriction. Acta Physiol. Hung. 99 400–410. 10.1556/APhysiol.99.2012.4.4
    1. Loenneke J. P., Wilson J. M., Marín P. J., Zourdos M. C., Bemben M. G. (2012d). Low intensity blood flow restriction training: a meta-analysis. Eur. J. Appl. Physiol. 112 1849–1859. 10.1007/s00421-011-2167-x
    1. Luebbers P. E., Fry A. C., Kriley L. M., Butler M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J. Strength Cond. Res. 28 2270–2280. 10.1519/JSC.0000000000000385
    1. Madarame H., Kurano M., Fukumura K., Fukuda T., Nakajima T. (2013). Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study. Clin. Physiol. Funct. Imaging 33 11–17. 10.1111/j.1475-097X.2012.01158.x
    1. Madarame H., Kurano M., Takano H., Iida H., Sato Y., Ohshima H., et al. (2010). Effects of low-intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clin. Physiol. Funct. Imaging 30 210–213. 10.1111/j.1475-097X.2010.00927.x
    1. Madarame H., Neya M., Ochi E., Nakazato K., Sato Y., Ishii N. (2008). Cross-transfer effects of resistance training with blood flow restriction. Med. Sci. Sports Exerc. 40 258–263. 10.1249/mss.0b013e31815c6d7e
    1. Manimmanakorn A., Hamlin M. J., Ross J. J., Taylor R., Manimmanakorn N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J. Sci. Med. Sport 16 337–342. 10.1016/j.jsams.2012.08.009
    1. Manini T. M., Clark B. C. (2009). Blood flow restricted exercise and skeletal muscle health. Exerc. Sport Sci. Rev. 37 78–85. 10.1097/JES.0b013e31819c2e5c
    1. Manini T. M., Yarrow J. F., Buford T. W., Clark B. C., Conover C. F., Borst S. E. (2012). Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm. IGF Res. 22 167–172. 10.1016/j.ghir.2012.05.002
    1. Martín-Hernández J., Marin P. J., Menéndez H., Ferrero C., Loenneke J. P., Herrero A. J. (2013). Muscular adaptations after two different volumes of blood flow-restricted training. Scand. J. Med. Sci. Sports 23 114–120. 10.1111/sms.12036
    1. Mattocks K. T., Jessee M. B., Counts B. R., Buckner S. L., Grant Mouser J., Dankel S. J., et al. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol. Behav. 171 181–186. 10.1016/j.physbeh.2017.01.015
    1. May A. K., Brandner C. R., Warmington S. A. (2017). Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise. Physiol. Rep. 5:e13142. 10.14814/phy2.13142
    1. McEwen J. A., Owens J. G., Jeyasurya J. (2018). Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? J. Med. Biol. Eng. 39 7–11.
    1. Moore D. R., Burgomaster K. A., Schofield L. M., Gibala M. J., Sale D. G., Phillips S. M. (2004). Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur. J. Appl. Physiol. 92 399–406.
    1. Mouser J. G., Dankel S. J., Jessee M. B., Mattocks K. T., Buckner S. L., Counts B. R., et al. (2017a). A tale of three cuffs: the hemodynamics of blood flow restriction. Eur. J. Appl. Physiol. 117 1493–1499. 10.1007/s00421-017-3644-7
    1. Mouser J. G., Laurentino G. C., Dankel S. J., Buckner S. L., Jessee M. B., Counts B. R., et al. (2017b). Blood flow in humans following low-load exercise with and without blood flow restriction. Appl. Physiol. Nutr. Metab. 42 1165–1171. 10.1139/apnm-2017-0102
    1. Murrant C. L., Sarelius I. H. (2015). Local control of blood flow during active hyperaemia: what kinds of integration are important? J. Physiol. 593 4699–4711. 10.1113/JP270205
    1. Nakajima T., Kurano M., Iida H., Takano H., Oonuma H., Morita T., et al. (2006). Use and safety of KAATSU training: results of a national survey. Int. J. KAATSU Train. Res. 2 5–13. 10.3806/ijktr.2.5
    1. Nakajima T., Takano H., Kurano M., Iida H., Kubota N., Yasuda T., et al. (2007). Effects of KAATSU training on haemostasis in healthy subjects. Int. J. KAATSU Train. Res. 3 11–20. 10.2147/IJGM.S194883
    1. Natsume T., Ozaki H., Kakigi R., Kobayashi H., Naito H. (2018). Effects of training intensity in electromyostimulation on human skeletal muscle. Eur. J. Appl. Physiol. 118 1339–1347. 10.1007/s00421-018-3866-3
    1. Natsume T., Ozaki H., Saito A. I., Abe T., Naito H. (2015). Effects of electrostimulation with blood flow restriction on muscle size and strength. Med. Sci. Sports Exerc. 47 2621–2627. 10.1249/MSS.0000000000000722
    1. Neto G. R., Sousa M. S., Costa e Silva G. V., Gil A. L., Salles B. F., Novaes J. S. (2016). Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin. Physiol. Funct. Imaging 36 53–59. 10.1111/cpf.12193
    1. Nielsen J. L., Aagaard P., Bech R. D., Nygaard T., Hvid L. G., Wernbom M., et al. (2012). Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J. Physiol. 590 4351–4361. 10.1113/jphysiol.2012.237008
    1. Nielsen J. L., Aagaard P., Prokhorova T. A., Nygaard T., Bech R. D., Suetta C., et al. (2017a). Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J. Physiol. 595 4857–4873. 10.1113/JP273907
    1. Nielsen J. L., Frandsen U., Prokhorova T., Bech R. D., Nygaard T., Suetta C., et al. (2017b). Delayed effect of blood flow-restricted resistance training on rapid force capacity. Med. Sci. Sports Exerc. 49 1157–1167. 10.1249/MSS.0000000000001208
    1. Nikolaidis M. G., Paschalis V., Giakas G., Fatouros I. G., Koutedakis Y., Kouretas D., et al. (2007). Decreased blood oxidative stress after repeated muscle-damaging exercise. Med. Sci. Sports Exerc. 39 1080–1089. 10.1249/mss.0b013e31804ca10c
    1. Nosaka K., Newton M. (2002). Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med. Sci. Sports Exerc. 34 63–69. 10.1097/00005768-200201000-00011
    1. Ogasawara R., Loenneke J. P., Thiebaud R. S., Abe T. (2013). Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int. J. Clin. Med. 4 114–121. 10.4236/ijcm.2013.42022
    1. Ohta H., Kurosawa H., Ikeda H., Iwase Y., Satou N., Nakamura S. (2003). Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 74 62–68. 10.1080/00016470310013680
    1. Ozaki H., Miyachi M., Nakajima T., Abe T. (2011a). Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults. Angiology 62 81–86. 10.1177/0003319710375942
    1. Ozaki H., Yasuda T., Fujita S., Ogasawara R., Sugaya M., Nakajima T., et al. (2011b). Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J. Gerontol. A Biol. Sci. Med. Sci. 66 257–263. 10.1093/gerona/glq182
    1. Ozaki H., Yasuda T., Ogasawara R., Sakamaki-Sunaga M., Naito H., Abe T. (2013). Effects of high-intensity and blood flow-restricted low-intensity resistance training on carotid arterial compliance: role of blood pressure during training sessions. Eur. J. Appl. Physiol. 113 167–174. 10.1007/s00421-012-2422-9
    1. Park S., Kim J. K., Choi H. M., Kim H. G., Beekley M. D., Nho H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. Eur. J. Appl. Physiol. 109 591–600. 10.1007/s00421-010-1377-y
    1. Patterson S. D., Brandner C. R. (2017). The role of blood flow restriction training for applied practitioners: a questionnaire-based survey. J. Sports Sci. 36 123–130. 10.1080/02640414.2017.1284341
    1. Patterson S. D., Ferguson R. A. (2010). Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women. Eur. J. Appl. Physiol. 108 1025–1033. 10.1007/s00421-009-1309-x
    1. Patterson S. D., Ferguson R. A. (2011). Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J. Aging Phys. Act. 19 201–213. 10.1123/japa.19.3.201
    1. Patterson S. D., Hughes L., Head P., Warmington S., Brandner C. R. (2017). Blood flow restriction training: a novel approach to augment clinical rehabilitation: how to do it. Br. J. Sports Med. 51 1648–1649. 10.1136/bjsports-2017-097738
    1. Pearson S. J., Hussain S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 45 187–200. 10.1007/s40279-014-0264-9
    1. Pizza F. X., Koh T. J., McGregor S. J., Brooks S. V. (2002). Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J. Appl. Physiol. 92 1873–1878. 10.1152/japplphysiol.01055.2001
    1. Poton R., Polito M. D. (2015). Hemodynamic responses during lower-limb resistance exercise with blood flow restriction in healthy subjects. J. Sports Med. Phys. Fitness 55 1571–1577.
    1. Poton R., Polito M. D. (2016). Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin. Physiol. Funct. Imaging 36 231–236. 10.1111/cpf.12218
    1. Proske U., Morgan D. L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537(Pt 2), 333–345. 10.1111/j.1469-7793.2001.00333.x
    1. Raskob G. E., Angchaisuksiri P., Blanco A. N., Buller H., Gallus A., Hunt B. J., et al. (2014). Thrombosis: a major contributor to global disease burden. Arterioscler. Thromb. Vasc. Biol. 34 2363–2371. 10.1161/ATVBAHA.114.304488
    1. Reid M. B., Durham W. J. (2002). Generation of reactive oxygen and nitrogen species in contracting skeletal muscle. Ann. N. Y. Acad. Sci. 959 108–116. 10.1111/j.1749-6632.2002.tb02087.x
    1. Renzi C. P., Tanaka H., Sugawara J. (2010). Effects of leg blood flow restriction during walking on cardiovascular function. Med. Sci. Sports Exerc. 42 726–732. 10.1249/MSS.0b013e3181bdb454
    1. Rodriguez M. C., Rosenfeld J., Tarnopolsky M. A. (2003). Plasma malondialdehyde increases transiently after ischemic forearm exercise. Med. Sci. Sports Exerc. 35 1859–1865. 10.1249/01.mss.0000093609.75937.70
    1. Rossow L. M., Fahs C. A., Loenneke J. P., Thiebaud R. S., Sherk V. D., Abe T., et al. (2012). Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin. Physiol. Funct. Imaging 32 331–337. 10.1111/j.1475-097X.2012.01131.x
    1. Rossow L. M., Fahs C. A., Sherk V. D., Seo D. I., Bemben D. A., Bemben M. G. (2011). The effect of acute blood-flow-restricted resistance exercise on postexercise blood pressure. Clin. Physiol. Funct. Imaging 31 429–434. 10.1111/j.1475-097X.2011.01038.x
    1. Sakamaki M. G., Bemben M., Abe T. (2011). Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow. J. Sports Sci. Med. 10 338–340.
    1. Saltin B., Rådegran G., Koskolou M. D., Roach R. C. (1998). Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiol. Scand. 162 421–436. 10.1046/j.1365-201x.1998.0293e.x
    1. Scott B. R., Loenneke J. P., Slattery K. M., Dascombe B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 45 313–325. 10.1007/s40279-014-0288-1
    1. Sieljacks P., Matzon A., Wernbom M., Ringgaard S., Vissing K., Overgaard K. (2016). Muscle damage and repeated bout effect following blood flow restricted exercise. Eur. J. Appl. Physiol. 116 513–525. 10.1007/s00421-015-3304-8
    1. Silverstein M. D., Heit J. A., Mohr D. N., Petterson T. M., O’Fallon W. M., Melton L. J., III (1998). Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch. Intern. Med. 158 585–593.
    1. Slysz J., Stultz J., Burr J. F. (2016). The efficacy of blood flow restricted exercise: a systematic review & meta-analysis. J. Sci. Med. Sport 19 669–675. 10.1016/j.jsams.2015.09.005
    1. Slysz J. T., Burr J. F. (2018). The effects of blood flow restricted electrostimulation on strength and hypertrophy. J. Sport Rehabil. 27 257–262. 10.1123/jsr.2017-0002
    1. Staunton C. A., May A. K., Brandner C. R., Warmington S. A. (2015). Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults. Eur. J. Appl. Physiol. 115 2293–2302. 10.1007/s00421-015-3213-x
    1. Stegnar M., Pentek M. (1993). Fibrinolytic response to venous occlusion in healthy subjects: relationship to age, gender, body weight, blood lipids and insulin. Thromb. Res. 69 81–92. 10.1016/0049-3848(93)90005-9
    1. Sugawara J., Tsubasa T., Hirofumi T. (2015). Impact of leg blood flow restriction during walking on central arterial hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 R732–R739. 10.1152/ajpregu.00095.2015
    1. Tabata S., Suzuki Y., Azuma K. (2016). Rhabdomyolysis after performing blood flow restriction training: a case report. J. Strength Cond. Res. 30 2064–2068. 10.1519/JSC.0000000000001295
    1. Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1
    1. Takano N., Kusumi M., Takano H. (2013). Evaluation of fetal status during KAATSU training®in the third trimester of pregnancy. Int. J. KAATSU Train. Res. 9 7–11. 10.3806/ijktr.9.7
    1. Takarada Y., Sato Y., Ishii N. (2002). Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur. J. Appl. Physiol. 86 308–314. 10.1007/s00421-001-0561-5
    1. Takarada Y., Nakamura Y., Aruga S., Onda T., Miyazaki S., Ishii N. (2000a). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J. Appl. Physiol. 88 61–65. 10.1152/jappl.2000.88.1.61
    1. Takarada Y., Takazawa H., Ishii N. (2000b). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sports Exerc. 32 2035–2039. 10.1097/00005768-200012000-00011
    1. Takarada Y., Takazawa H., Sato Y., Takebayashi S., Tanaka Y., Ishii N. (2000c). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 88 2097–2106. 10.1152/jappl.2000.88.6.2097
    1. Takarada Y., Tsuruta T., Ishii N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn. J. Physiol. 54 585–592. 10.2170/jjphysiol.54.585
    1. Taylor C. W., Ingham S. A., Ferguson R. A. (2016). Acute and chronic effect of sprint interval training combined with postexercise blood-flow restriction in trained individuals. Exp. Physiol. 101 143–154. 10.1113/EP085293
    1. Tennent D. J., Hylden C. M., Johnson A. E., Burns T. C., Wilken J. M., Owens J. G. (2017). Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study. Clin. J. Sport Med. 27 245–252. 10.1097/JSM.0000000000000377
    1. Thiebaud R. S., Loenneke J. P., Fahs C. A., Kim D., Ye X., Abe T., et al. (2014). Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol. Hung. 101 150–157. 10.1556/APhysiol.101.2014.2.3
    1. Thiebaud R. S., Yasuda T., Loenneke J. P., Abe T. (2013). Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv. Med. Appl. Sci. 5 53–59. 10.1556/IMAS.5.2013.2.1
    1. Thompson K. M. A., Slysz J. T., Burr J. F. (2018). Risks of exertional rhabdomyolysis with blood flow–restricted training: beyond the case report. Clin. J. Sport Med. 28 491–492. 10.1097/jsm.0000000000000488
    1. Tietze D. C., Borchers J. (2014). Exertional rhabdomyolysis in the athlete: a clinical review. Sports Health 6 336–339. 10.1177/1941738114523544
    1. Umbel J. D., Hoffman R. L., Dearth D. J., Chleboun G. S., Manini T. M., Clark B. C. (2009). Delayed-onset muscle soreness induced by low-load blood flow-restricted exercise. Eur. J. Appl. Physiol. 107 687–695. 10.1007/s00421-009-1175-6
    1. Vieira P. J., Chiappa G. R., Umpierre D., Stein R., Ribeiro J. P. (2013). Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. J. Strength Cond. Res. 27 2288–2294. 10.1519/JSC.0b013e318278f21f
    1. Wells P. S., Anderson D. R., Ginsberg J. (2000). Assessment of deep vein thrombosis or pulmonary embolism by the combined use of clinical model and noninvasive diagnostic tests. Semin. Thromb. Hemost. 26 643–656. 10.1055/s-2000-13219
    1. Wernbom M., Augustsson J., Raastad T. (2008). Ischemic strength training: a low-load alternative to heavy resistance exercise? Scand. J. Med. Sci. Sports 18 401–416. 10.1111/j.1600-0838.2008.00788.x
    1. Wernbom M., Paulsen G., Nilsen T. S., Hisdal J., Raastad T. (2012). Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur. J. Appl. Physiol. 112 2051–2063. 10.1007/s00421-011-2172-0
    1. Wilson J. M., Lowery R. P., Joy J. M., Loenneke J. P., Naimo M. A. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J. Strength Cond. Res. 27 3068–3075. 10.1519/JSC.0b013e31828a1ffa
    1. Yasuda T., Abe T., Sato Y., Midorikawa T., Kearns C. F., Inoue K., et al. (2005). Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training. Int. J. KAATSU Train. Res. 1 65–70. 10.3806/ijktr.1.65
    1. Yasuda T., Abe T., Brechue W. F., Iida H., Takano H., Meguro K., et al. (2010a). Venous blood gas and metabolite response to low-intensity muscle contractions with external limb compression. Metabolism 59 1510–1519. 10.1016/j.metabol.2010.01.016
    1. Yasuda T., Fujita S., Ogasawara R., Sato Y., Abe T. (2010b). Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin. Physiol. Funct. Imaging 30 338–343. 10.1111/j.1475-097X.2010.00949.x
    1. Yasuda T., Fukumura K., Tomaru T., Nakajima T. (2016). Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women. Oncotarget 7 33595–33607. 10.18632/oncotarget.9564
    1. Yasuda T., Fukumura K., Iida H., Nakajima T. (2015a). Effects of detraining after blood flow-restricted low-load elastic band training on muscle size and arterial stiffness in older women. Springerplus 4:348. 10.1186/s40064-015-1132-2
    1. Yasuda T., Fukumura K., Uchida Y., Koshi H., Iida H., Masamune K., et al. (2015b). Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 70 950–958. 10.1093/gerona/glu084
    1. Yasuda T., Loenneke J. P., Ogasawara R., Abe T. (2013). Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise. Acta Physiol. Hung. 100 419–426. 10.1556/APhysiol.100.2013.4.6
    1. Yasuda T., Loenneke J. P., Thiebaud R. S., Abe T. (2012). Effects of Blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS One 7:e52843. 10.1371/journal.pone.0052843
    1. Yasuda T., Miyagi Y., Kubota Y., Sato Y., Nakajima T., Bemben M. G., et al. (2006). Electromyographic responses of arm and chest muscle during bench press exercise with and without KAATSU. Int. J. KAATSU Train. Res. 2 15–18. 10.3806/ijktr.2.15
    1. Yasuda T., Ogasawara R., Sakamaki M., Bemben M. G., Abe T. (2011a). Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow restricted low-intensity resistance training. Clin. Physiol. Funct. Imaging 31 347–351. 10.1111/j.1475-097X.2011.01022.x
    1. Yasuda T., Ogasawara R., Sakamaki M., Ozaki H., Sato Y., Abe T. (2011b). Combined effects of lowintensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur. J. Appl. Physiol. 111 2525–2533. 10.1007/s00421-011-1873-8
    1. Yeung E. W., Whitehead N. P., Suchyna T. M., Gottlieb P. A., Sachs F., Allen D. G. (2005). Effects of stretch-activated channel blockers on (Ca2+)i and muscle damage in the mdx mouse. J. Physiol. 562(Pt 2), 367–380. 10.1113/jphysiol.2004.075275
    1. Younger A. S., McEwen J. A., Inkpen K. (2004). Wide contoured thigh cuffs and automated limb occlusion measurement allow lower tourniquet pressures. Clin. Orthop. 428 286–293. 10.1097/01.blo.0000142625.82654.b3
    1. Zimmerman J. L., Shen M. C. (2013). Rhabdomyolysis. Chest 144 1058–1065. 10.1378/chest.12-2016

Source: PubMed

3
Subscribe