Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective

Eugenijus Kaniusas, Stefan Kampusch, Marc Tittgemeyer, Fivos Panetsos, Raquel Fernandez Gines, Michele Papa, Attila Kiss, Bruno Podesser, Antonino Mario Cassara, Emmeric Tanghe, Amine Mohammed Samoudi, Thomas Tarnaud, Wout Joseph, Vaidotas Marozas, Arunas Lukosevicius, Niko Ištuk, Antonio Šarolić, Sarah Lechner, Wlodzimierz Klonowski, Giedrius Varoneckas, Jozsef Constantin Széles, Eugenijus Kaniusas, Stefan Kampusch, Marc Tittgemeyer, Fivos Panetsos, Raquel Fernandez Gines, Michele Papa, Attila Kiss, Bruno Podesser, Antonino Mario Cassara, Emmeric Tanghe, Amine Mohammed Samoudi, Thomas Tarnaud, Wout Joseph, Vaidotas Marozas, Arunas Lukosevicius, Niko Ištuk, Antonio Šarolić, Sarah Lechner, Wlodzimierz Klonowski, Giedrius Varoneckas, Jozsef Constantin Széles

Abstract

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.

Keywords: animal research; auricular vagus nerve; biophysics; brain plasticity; clinical studies; inflammation; nerve stimulation.

Figures

FIGURE 1
FIGURE 1
Natural sensory innervation of the auricle versus its artificial stimulation. (A) The vagus nerve (VN) connects the brain with most of the organs within the thorax and abdomen. Afferent auricular branches (aVN) leave the cervical VN at the level of the jugular ganglion just outside the cranium and innervate the rather central regions of the pinna of the outer ear (Peuker and Filler, 2002). (B) Electric stimulation of aVN endings with needle electrodes located within these central regions. NTS, nucleus of the solitary tract; NSNT, nucleus spinalis of the trigeminal nerve; NA, nucleus ambiguous; DMN, dorsal motor nucleus. This figure and figure caption was originally published in the sister manuscript to this review (Kaniusas et al., 2019), which was published in Frontiers of Neuroscience under the creative commons attribution license CC BY 4.0.
FIGURE 2
FIGURE 2
Brain modulation via electrical stimulation of auricular vagus nerve (aVN) endings. (A) Intact feedback-loop which is composed out of efferent VN fibers (controlling different organs and functions) and afferent VN fibers (carrying sensory information back to the brain) for proper control of bodily organs and functions. (B) Different diseases may lead to a lost or impaired afferent feedback to the brain (e.g., due to neurodegeneration or maladaptive plasticity), which makes it impossible for the brain (the control station of the body) to adapt to changes in organs, functions, and/or environmental factors. (C) As a hypothesis, stimulation of aVN fibers substitutes the lost or impaired afferent feedback to the brain while inducing systemic regeneration processes. These processes, in turn, may lead to sustainable recovery of controlled organs and functions as well as recovery of the relevant sensory feedback-loop.
FIGURE 3
FIGURE 3
Reported clinical applications of the auricular vagus nerve stimulation (aVNS) in humans. The total area of the pie chart indicates the total number of publications reviewed, whereas individual pieces refer to the respective numbers of clinical trials, case studies, and reviews.

References

    1. Afanasiev S. A., Pavliukova E. N., Kuzmichkina M. A., Rebrova T. Y., Anfinogenova Y., Likhomanov K. S., et al. (2016). Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 21 548–556. 10.1111/anec.12349
    1. Alvord L. S., Farmer B. L. (1998). Anatomy and orientation of the human external ear. J. Am. Acad. Audiol. 8 383–390.
    1. Andermann M. L., Lowell B. B. (2017). Toward a wiring diagram understanding of appetite control. Neuron 95 757–778. 10.1016/j.neuron.2017.06.014
    1. Annoni E. M., Xie X., Lee S. W., Libbus I., KenKnight B. H., Osborn J. W., et al. (2015). Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol. Rep. 3:e12476. 10.14814/phy2.12476
    1. Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10 875–881. 10.1016/j.brs.2017.05.006
    1. Ay I., Napadow V., Ay H. (2014). Electrical stimulation of the vagus nerve dermatome in the external ear is protective in rat cerebral ischemia. Brain Stimul. 8 7–12. 10.1016/j.brs.2014.09.009
    1. Babygirija R., Sood M., Kannampalli P., Sengupta J. N., Miranda A. (2017). Percutaneous electrical nerve field stimulation modulates central pain pathways and attenuates post-inflammatory visceral and somatic hyperalgesia in rats. Neuroscience 356 11–21. 10.1016/j.neuroscience.2017.05.012
    1. Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11 947–948. 10.1016/j.brs.2018.06.003
    1. Badran B. W., Mithoefer O. J., Summer C. E., LaBate N. T., Glusman C. E., Badran A. W., et al. (2018b). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11 699–708. 10.1016/j.brs.2018.04.004
    1. Badran B. W., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., Brown J. C., et al. (2017). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11 492–500. 10.1016/j.brs.2017.12.009
    1. Banni S., Carta G., Murru E., Cordeddu L., Giordano E., Marrosu F., et al. (2012). Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS One 7:e44813. 10.1371/journal.pone.0044813
    1. Barella L. F., Miranda R. A., Franco C. C. S., Alves S., Malta A., Ribeiro T. A. S., et al. (2014). Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats. Exp. Physiol. 100 57–68. 10.1113/expphysiol.2014.082982
    1. Bauer S., Baier H., Baumgartner C., Bohlmann K., Fauser S., Graf W., et al. (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9 356–363. 10.1016/j.brs.2015.11.003
    1. Becker M. (2007). Electroacupuncture and Autogenic Training for the therapy of Rheumatoid Arthritis: Randomised and Controlled Study. Doctoral dissertation, Medizinische Hochschule Hannover, Hanover.
    1. Beekwilder J. P., Beems T. (2010). Overview of the clinical applications of vagus nerve stimulation. J. Clin. Neurophysiol. 27 130–138. 10.1097/WNP.0b013e3181d64d8a
    1. Bermejo P., Lopez M., Larraya I., Chamorro J., Cobo J. L., Ordonez S., et al. (2017). Innervation of the human cavum conchae and auditory canal: anatomical basis for transcutaneous auricular nerve stimulation. Biomed Res. Int. 2017:7830919. 10.1155/2017/7830919
    1. Berthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85 1–17. 10.1016/s1566-0702(00)00215-0
    1. Bilgutay A. M., Bilgutay I. M., Merkel F. K., Lillehei C. W. (1968). Vagal tuning. A new concept in the treatment of supraventricular arrhythmias, angina pectoris, and heart failure. J. Thorac. Cardiovasc. Surg. 56 71–82.
    1. Billman G. E., Huikuri H. V., Sacha J., Trimmel K. (2015). An introduction to heart rate variability: methodological considerations and clinical applications. Front. Physiol. 6:55 10.3389/fphys.2015.00055
    1. Bohotin C., Scholsem M., Bohotin V., Franzen R., Schoenen J. (2003). Vagus nerve stimulation attenuates heat- and formalin-induced pain in rats. Neurosci. Lett. 351 79–82. 10.1016/s0304-3940(03)00908-x
    1. Bonaz B., Pellissier S. (2016). Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J. Physiol. 594 5781–5790. 10.1113/JP271539
    1. Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 458–462. 10.1038/35013070
    1. Boscan P., Pickering A. E., Paton J. F. (2002). The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp. Physiol. 87 259–266. 10.1113/eph8702353
    1. Brack K. E., Patel V. H., Coote J. H., Ng G. A. (2007). Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J. Physiol. 583 695–704. 10.1113/jphysiol.2007.138461
    1. Brack K. E., Patel V. H., Mantravardi R., Coote J. H., Ng G. A. (2009). Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. J. Physiol. 587 3045–3054. 10.1113/jphysiol.2009.169417
    1. Browning K. N. (2010). Glucose and the vagus: sensory cells savour sweet substances. J. Physiol. 588 749–750. 10.1113/jphysiol.2010.187443
    1. Buchholz B., Donato M., Perez V., Deutsch A. C. R., Hocht C., Del Mauro J. S., et al. (2014). Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions. Pflugers Arch. 467 1509–1522. 10.1007/s00424-014-1591-2
    1. Burger A. M., Verkuil B. (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11 945–946. 10.1016/j.brs.2018.03.018
    1. Busch V., Zeman F., Heckel A., Menne F., Ellrich J., Eichhammer P. (2012). The effect of transcutaneous vagus nerve stimulation on pain perception–an experimental study. Brain Stimul. 6 202–209. 10.1016/j.brs.2012.04.006
    1. Byku M., Mann D. L. (2016). Neuromodulation of the failing heart: lost in translation? JACC Basic Transl. Sci. 1 95–106. 10.1016/j.jacbts.2016.03.004
    1. Calvillo L., Vanoli E., Andreoli E., Besana A., Omodeo E., Gnecchi M., et al. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 58 500–507. 10.1097/FJC.0b013e31822b7204
    1. Capone F., Assenza G., Di Pino G., Musumeci G., Ranieri F., Florio L., et al. (2014). The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 122 679–685. 10.1007/s00702-014-1299-7
    1. Capone F., Miccinilli S., Pellegrino G., Zollo L., Simonetti D., Bressi F., et al. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plast. 2017:7876507. 10.1155/2017/7876507
    1. Chae J.-H., Nahas Z., Lomarev M., Denslow S., Lorberbaum J. P., Bohning D. E., et al. (2003). A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J. Psychiatr. Res. 37 443–455. 10.1016/s0022-3956(03)00074-8
    1. Chakravarthy K., Chaudhry H., Williams K., Christo P. J. (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19:54. 10.1007/s11916-015-0528-6
    1. Chapleau M. W., Rotella D. L., Reho J. J., Rahmouni K., Stauss H. M. (2016). Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 311 H276–H285. 10.1152/ajpheart.00043.2016
    1. Chen M., Yu L., Liu Q., Jiang H., Zhou S. (2015a). Vagus nerve stimulation: a spear role or a shield role in atrial fibrillation? Int. J. Cardiol. 198 115–116. 10.1016/j.ijcard.2015.06.171
    1. Chen M., Yu L., Ouyang F., Liu Q., Wang Z., Wang S., et al. (2015b). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int. J. Cardiol. 187 44–45. 10.1016/j.ijcard.2015.03.351
    1. Chen S.-P., Ay I., de Morais A. L., Qin T., Zheng Y., Sadeghian H., et al. (2015c). Vagus nerve stimulation inhibits cortical spreading depression. Pain 157 797–805. 10.1097/j.pain.0000000000000437
    1. Cho H. K., Park I. J., Jeong Y. M., Lee Y. J., Hwang S. H. (2015). Can perioperative acupuncture reduce the pain and vomiting experienced after tonsillectomy? A meta-analysis. Laryngoscope 126 608–615. 10.1002/lary.25721
    1. Chowdhary S., Townend J. N. (1999). Role of nitric oxide in the regulation of cardiovascular autonomic control. Clin. Sci. 97 5–17. 10.1042/cs0970005
    1. Cimpianu C.-L., Strube W., Falkai P., Palm U., Hasan A. (2016). Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J. Neural Transm. 124 145–158. 10.1007/s00702-016-1642-2
    1. Clancy J. A., Deuchars S. A., Deuchars J. (2012). The wonders of the Wanderer. Exp. Physiol. 98 38–45. 10.1113/expphysiol.2012.064543
    1. Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7 871–877. 10.1016/j.brs.2014.07.031
    1. Clark K. B., Smith D. C., Hassert D. L., Browning R. A., Naritoku D. K., Jensen R. A. (1998). Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol. Learn. Mem. 70 364–373. 10.1006/nlme.1998.3863
    1. Clayton W., Elasy T. A. (2009). A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clin. Diabetes 27 52–58. 10.2337/diaclin.27.2.52
    1. Clodi C. A. (2016). Thermographic Changes Due to Percutaneous Electrical Stimulation of Ramus Auricularis Nervi Vagi in Patients with Diabetic Foot Syndrome and Healthy Persons. Diploma thesis, Medical University of Vienna, Vienna.
    1. Colangelo A. M., Alberghina L., Papa M. (2014). Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci. Lett. 565 59–64. 10.1016/j.neulet.2014.01.014
    1. Colzato L. S., Ritter S. M., Steenbergen L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 111 72–76. 10.1016/j.neuropsychologia.2018.01.003
    1. Conlon K., Kidd C. (1999). Neuronal nitric oxide facilitates vagal chronotropic and dromotropic actions on the heart. J. Auton. Nerv. Syst. 75 136–146. 10.1016/s0165-1838(98)00185-4
    1. Conway C. R., Sheline Y. I., Chibnall J. T., George M. S., Fletcher J. W., Mintun M. A. (2006). Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res. 146 179–184. 10.1016/j.pscychresns.2005.12.007
    1. Conway C. R., Xiong W. (2018). The mechanism of action of vagus nerve stimulation in treatment-resistant depression. Psychiatr. Clin. North Am. 41 395–407. 10.1016/j.psc.2018.04.005
    1. Cork S. C. (2018). The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity. J. Neuroendocrinol. 30 (Suppl. 1):e12643. 10.1111/jne.12643
    1. Dawson J., Pierce D., Dixit A., Kimberley T. J., Robertson M., Tarver B., et al. (2015). Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47 143–150. 10.1161/STROKEAHA.115.010477
    1. De Couck M., Cserjesi R., Caers R., Zijlstra W. P., Widjaja D., Wolf N., et al. (2016). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 203 88–96. 10.1016/j.autneu.2016.11.003
    1. De Couck M., Mravec B., Gidron Y. (2011). You may need the vagus nerve to understand pathophysiology and to treat diseases. Clin. Sci. 122 323–328. 10.1042/CS20110299
    1. De Ferrari G. M., Crijns H. J. G. M., Borggrefe M., Milasinovic G., Smid J., Zabel M., et al. (2010). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32 847–855. 10.1093/eurheartj/ehq391
    1. De Ferrari G. M., Schwartz P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail. Rev. 16 195–203. 10.1007/s10741-010-9216-0
    1. de Lartigue G. (2016). Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594 5791–5815. 10.1113/JP271538
    1. de Lartigue G., Diepenbroek C. (2016). Novel developments in vagal afferent nutrient sensing and its role in energy homeostasis. Curr. Opin. Pharmacol. 31 38–43. 10.1016/j.coph.2016.08.007
    1. De Ridder D., Vanneste S., Engineer N. D., Kilgard M. P. (2013). Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17 170–179. 10.1111/ner.12127
    1. Deuchars S. A., Lall V. K., Clancy J., Mahadi M., Murray A., Peers L., et al. (2017). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp. Physiol. 103 326–331. 10.1113/EP086433
    1. Dietrich S., Smith J., Scherzinger C., Hofmann-Preiss K., Freitag T., Eisenkolb A., et al. (2008). [A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI]. Biomed. Tech. 53 104–111. 10.1515/BMT.2008.022
    1. Du H. J., Zhou S. Y. (1990). Involvement of solitary tract nucleus in control of nociceptive transmission in cat spinal cord neurons. Pain 40 323–331. 10.1016/0304-3959(90)91129-7
    1. Ellrich J. (2011). Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 6 254–256.
    1. Ellrich J., Busch V., Eichhammer P. (2011). Inhibition of pain processing by transcutaneous vagus nerve stimulation. Neuromodulation 14:383. 10.1016/j.brs.2012.04.006
    1. Ellrich J., Lamp S. (2005). Peripheral nerve stimulation inhibits nociceptive processing: an electrophysiological study in healthy volunteers. Neuromodulation 8 225–232. 10.1111/j.1525-1403.2005.00029.x
    1. Engineer N. D., Riley J. R., Seale J. D., Vrana W. A., Shetake J. A., Sudanagunta S. P., et al. (2011). Reversing pathological neural activity using targeted plasticity. Nature 470 101–104. 10.1038/nature09656
    1. Ergene N., Tan U. (2006). The treatment of obesity by acupuncture. Int. J. Neurosci. 116 165–175. 10.1080/00207450500341522
    1. Fallgatter A. J., Ehlis A.-C., Ringel T. M., Herrmann M. J. (2004). Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int. J. Psychophysiol. 56 37–43. 10.1016/j.ijpsycho.2004.09.007
    1. Fallgatter A. J., Neuhauser B., Herrmann M. J., Ehlis A.-C., Wagener A., Scheuerpflug P., et al. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. 110 1437–1443. 10.1007/s00702-003-0087-6
    1. Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H., et al. (2015). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatry 79 266–273. 10.1016/j.biopsych.2015.03.025
    1. Florea V. G., Cohn J. N. (2014). The autonomic nervous system and heart failure. Circ. Res. 114 1815–1826. 10.1161/CIRCRESAHA.114.302589
    1. Frangos E., Ellrich J., Komisaruk B. R. (2014). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 8 624–636. 10.1016/j.brs.2014.11.018
    1. Gao X. Y., Rong P., Ben H., Liu K., Zhu B., Zhang S. (2010). Morphological and electrophysiological characterization of auricular branch of vagus nerve: projections to the NTS in mediating cardiovascular inhibition evoked by the acupuncture-like stimulation. Abstr. Soc. Neurosci. 694:22/HHH45.
    1. Gao X.-Y., Zhang S.-P., Zhu B., Zhang H.-Q. (2007). Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats. Auton. Neurosci. 138 50–56. 10.1016/j.autneu.2007.10.003
    1. Garcia R. G., Lin R. L., Lee J., Kim J., Barbieri R., Sclocco R., et al. (2017). Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158 1461–1472. 10.1097/j.pain.0000000000000930
    1. Gbaoui L., Kaniusas E., Szeles C., Materna T., Varoneckas G. (2008). “Effects of the auricular electrical stimulation on heart rate variability assessed in phase space: pilot study,” in Proceedings of the IEEE Sensors 2008, Lecce, 176–179. 10.1109/icsens.2008.4716412
    1. Gidron Y., Kupper N., Kwaijtaal M., Winter J., Denollet J. (2006). Vagus-brain communication in atherosclerosis-related inflammation: a neuroimmunomodulation perspective of CAD. Atherosclerosis 195 e1–e9. 10.1016/j.atherosclerosis.2006.10.009
    1. Gold M. R., Van Veldhuisen D. J., Hauptman P. J., Borggrefe M., Kubo S. H., Lieberman R. A., et al. (2016). Vagus nerve stimulation for the treatment of heart failure: the INNOVATE-HF trial. J. Am. Coll. Cardiol. 68 149–158. 10.1016/j.jacc.2016.03.525
    1. Gomolka R. S., Kampusch S., Kaniusas E., Thürk F., Szeles J. C., Klonowski W. (2018). Higuchi fractal dimension of heart rate variability during percutaneous auricular vagus nerve stimulation in healthy and diabetic subjects. Front. Physiol. 9:1162. 10.3389/fphys.2018.01162
    1. Greif R., Laciny S., Mokhtarani M., Doufas A. G., Bakhshandeh M., Dorfer L., et al. (2002). Transcutaneous electrical stimulation of an auricular acupuncture point decreases anesthetic requirement. Anesthesiology 96 306–312. 10.1097/00000542-200202000-00014
    1. Groves D. A., Brown V. J. (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29 493–500. 10.1016/j.neubiorev.2005.01.004
    1. Grünberger W., Saidpour A., Müller-Klingspor V., Herzlinger D., Radner G. (2005). Ear electro-acupuncture for the reduction of labor pain and shortening of delivery time. Speculum 1 21–22.
    1. Guiraud D., Andreu D., Bonnet S., Carrault G., Couderc P., Hagege A., et al. (2016). Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation. J. Neural Eng. 13:041002. 10.1088/1741-2560/13/4/041002
    1. Hackl G., Prenner A., Jud P., Hafner F., Rief P., Seinost G., et al. (2017). Auricular vagal nerve stimulation in peripheral arterial disease patients. Vasa 46 462–470. 10.1024/0301-1526/a000660
    1. Han W., Tellez L. A., Perkins M. H., Perez I. O., Qu T., Ferreira J., et al. (2018). A neural circuit for gut-induced reward. Cell 175 665–678.e23. 10.1016/j.cell.2018.08.049
    1. Hansen M. K., O’Connor K. A., Goehler L. E., Watkins L. R., Maier S. F. (2001). The contribution of the vagus nerve in interleukin-1beta-induced fever is dependent on dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280 R929–R934. 10.1152/ajpregu.2001.280.4.R929
    1. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A., et al. (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 265 589–600. 10.1007/s00406-015-0618-9
    1. Hays S. A. (2015). Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics 13 382–394. 10.1007/s13311-015-0417-z
    1. Hays S. A., Khodaparast N., Hulsey D. R., Ruiz A., Sloan A. M., Rennaker R. L., et al. (2014). Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke 45 3097–3100. 10.1161/STROKEAHA.114.006654
    1. Hays S. A., Ruiz A., Bethea T., Khodaparast N., Carmel J. B., Rennaker R. L., et al. (2016). Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging 43 111–118. 10.1016/j.neurobiolaging.2016.03.030
    1. He B., Lu Z., He W., Huang B., Jiang H. (2016). Autonomic modulation by electrical stimulation of the parasympathetic nervous system: an emerging intervention for cardiovascular diseases. Cardiovasc. Ther. 34 167–171. 10.1111/1755-5922.12179
    1. He W., Wang X., Shi H., Shang H., Li L., Jing X., et al. (2012). Auricular acupuncture and vagal regulation. Evid. Based Complement. Alternat. Med. 2012:786839. 10.1155/2012/786839
    1. He W., Zhu B., Rong P. (2009). A new concept of transcutaneous vagus nerve stimulation for epileptic seizure. Abstr. Soc. Neurosci. 593:4.
    1. He W., Zhu B., Zhu X.-L., Li L., Bai W.-Z., Ben H. (2013). The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci. 14:85. 10.1186/1471-2202-14-85
    1. Hein E., Nowak M., Kiess O., Biermann T., Bayerlein K., Kornhuber J., et al. (2012). Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J. Neural Transm. 120 821–827. 10.1007/s00702-012-0908-6
    1. Holzer A., Leitgeb U., Spacek A., Wenzl R., Herkner H., Kettner S. (2011). Auricular acupuncture for postoperative pain after gynecological surgery: a randomized controlled trail. Minerva Anestesiol. 77 298–304.
    1. HRV (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation 93 1043–1065. 10.1161/01.cir.93.5.1043
    1. Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R. B., et al. (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Altern. Med. 14:203. 10.1186/1472-6882-14-203
    1. Huston J. M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., et al. (2007). Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 35 2762–2768. 10.1097/
    1. Jacobs H. I. L., Riphagen J. M., Razat C. M., Wiese S., Sack A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36 1860–1867. 10.1016/j.neurobiolaging.2015.02.023
    1. Jin Y., Kong J. (2017). Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front. Neurosci. 10:609. 10.3389/fnins.2016.00609
    1. Johnson M. I., Hajela V. K., Ashton C. H., Thompson J. W. (1991). The effects of auricular transcutaneous electrical nerve stimulation (TENS) on experimental pain threshold and autonomic function in healthy subjects. Pain 46 337–342. 10.1016/0304-3959(91)90116-f
    1. Ju Y., Zhang H., Chen M., Chi X., Lan W., Zhang H., et al. (2014). Effects of auricular stimulation in the cavum conchae on glucometabolism in patients with type 2 diabetes mellitus. Complement. Ther. Med. 22 858–863. 10.1016/j.ctim.2014.09.002
    1. Kaczmarczyk R., Tejera D., Simon B. J., Heneka M. T. (2017). Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease. J. Neurochem. 10.1111/jnc.14284 [Epub ahead of print].
    1. Kaelberer M. M., Buchanan K. L., Klein M. E., Barth B. B., Montoya M. M., Shen X., et al. (2018). A gut-brain neural circuit for nutrient sensory transduction. Science 361:eaat5236. 10.1126/science.aat5236
    1. Kager H., Likar R., Jabarzadeh H., Sittl R., Breschan C., Szeles J. (2009). Electrical punctual stimulation (P-STIM) with ear acupuncture following tonsillectomy, a randomised, controlled pilot study. Acute Pain 11 101–106. 10.1016/j.acpain.2009.10.001
    1. Kampusch S., Kaniusas E., Szeles J. C. (2015a). Modulation of muscle tone and sympathovagal balance in cervical dystonia using percutaneous stimulation of the auricular vagus nerve. Artif. Organs 39 E202–E212. 10.1111/aor.12621
    1. Kampusch S., Thürk F., Kaniusas E., Szeles J. C. (2015b). “Autonomous nervous system modulation by percutaneous auricular vagus nerve stimulation: multiparametric assessment and implications for clinical use in diabetic foot ulcerations,” in Proceedings of the IEEE Sensors Applications Symposium (SAS), Zadar, 79–84. 10.1109/sas.2015.7133579
    1. Kandel E. R., Schwartz J. H., Jessell T. M. (2000). Principles of Neural Science. New York, NY: McGraw-Hill.
    1. Kaniusas E. (2012). Biomedical Signals and Sensors I: Linking Physiological Phenomena and Biosignals. Berlin: Springer.
    1. Kaniusas E. (2019). Biomedical Signals and Sensors III: Linking Electric Biosignals and Biomedical Sensors. Berlin: Springer.
    1. Kaniusas E., Gbaoui L., Szeles J. C., Materna T., Varoneckas G. (2008). “Validation of auricular electrostimulation by heart rate variability and blood perfusion: possibilities and restrictions,” in Proceedings of the Microelectronics Conference, Vienna.
    1. Kaniusas E., Kampusch S., Szeles J. C. (2015). “Depth profiles of the peripheral blood oxygenation in diabetics and healthy subjects in response to auricular electrical stimulation: auricular vagus nerve stimulation as a potential treatment for chronic wounds,” in Proceedings of the IEEE Sensors Applications Symposium (SAS), Zadar, 11–16. 10.1109/sas.2015.7133566
    1. Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. (2019). Current directions in the auricular vagus nerve stimulation II - an engineering perspective. Front. Neurosci. 13:772 10.3389/fnins.2019.00772
    1. Kaniusas E., Varoneckas G., Mahr B., Szeles C. (2011). Optic visualization of auricular nerves and blood vessels: optimisation and validation. IEEE Trans. Instrum. Meas. 60 3253–3258. 10.1109/tim.2011.2159314
    1. Karemaker J. M. (2017). An introduction into autonomic nervous function. Physiol. Meas. 38 R89–R118. 10.1088/1361-6579/aa6782
    1. Kiss A., Tratsiakovich Y., Mahdi A., Yang J., Gonon A. T., Podesser B. K., et al. (2017). Vagal nerve stimulation reduces infarct size via a mechanism involving the alpha-7 nicotinic acetylcholine receptor and downregulation of cardiac and vascular arginase. Acta Physiol. 221 174–181. 10.1111/apha.12861
    1. Kletzl J. (2012). Assessment of Joint Mobility in Standardized Pain Therapy. Diploma thesis, Medical University of Vienna, Vienna.
    1. Koopman F. A., van Maanen M. A., Vervoordeldonk M. J., Tak P. P. (2017). Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J. Intern. Med. 282 64–75. 10.1111/joim.12626
    1. Kothe A. R. (2009). Transcutaneous Vagus Nerve Stimulation - Change of Psychometric Parameters as a Function of Different Stimulation Regions. Doctoral thesis, Friedrich-Alexander-University, Stuttgart.
    1. Kovacic K., Hainsworth K., Sood M., Chelimsky G., Unteutsch R., Nugent M., et al. (2017). Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol. Hepatol. 2 727–737. 10.1016/S2468-1253(17)30253-4
    1. Kraus T., Kiess O., Hosl K., Terekhin P., Kornhuber J., Forster C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 6 798–804. 10.1016/j.brs.2013.01.011
    1. Kraus T., Kiess O., Schanze A., Kornhuber J., Forster C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114 1485–1493. 10.1007/s00702-007-0755-z
    1. La Marca R., Nedeljkovic M., Yuan L., Maercker A., Elhert U. (2009). Effects of auricular electrical stimulation on vagal activity in healthy men: evidence from a three-armed randomized trial. Clin. Sci. 118 537–546. 10.1042/CS20090264
    1. Laqua R., Leutzow B., Wendt M., Usichenko T. (2014). Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain - a crossover placebo-controlled investigation. Auton. Neurosci. 185 120–122. 10.1016/j.autneu.2014.07.008
    1. Latremoliere A., Woolf C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10 895–926. 10.1016/j.jpain.2009.06.012
    1. Lehtimaki J., Hyvarinen P., Ylikoski M., Bergholm M., Makela J. P., Aarnisalo A., et al. (2012). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol. 133 378–382. 10.3109/00016489.2012.750736
    1. Leitner G. C., Hofmann I., Szeles C. (2015). P-16-9 Ducest-therapy, an innovative treatment for therapy of refractory chronic lower leg ulcers. Transfus. Med. Hemother. 42 (Suppl. 1), 1–66. 10.1002/term.2390
    1. Li H., Yin J., Zhang Z., Winston J. H., Shi X.-Z., Chen J. D. Z. (2015a). Auricular vagal nerve stimulation ameliorates burn-induced gastric dysmotility via sympathetic-COX-2 pathways in rats. Neurogastroenterol. Motil. 28 36–42. 10.1111/nmo.12693
    1. Li H., Zhang J.-B., Xu C., Tang Q.-Q., Shen W.-X., Zhou J.-Z., et al. (2015b). Effects and mechanisms of auricular vagus nerve stimulation on high-fat-diet–induced obese rats. Nutrition 31 1416–1422. 10.1016/j.nut.2015.05.007
    1. Li M., Zheng C., Sato T., Kawada T., Sugimachi M., Sunagawa K. (2003). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109 120–124. 10.1161/01.CIR.0000105721.71640.DA
    1. Li S., Zhai X., Rong P., McCabe M. F., Zhao J., Ben H., et al. (2014). Transcutaneous auricular vagus nerve stimulation triggers melatonin secretion and is antidepressive in Zucker diabetic fatty rats. PLoS One 9:e111100. 10.1371/journal.pone.0111100
    1. Likar R., Jabarzadeh H., Kager I., Trampitsch E., Breschan C., Szeles J. (2007). [Electrical point stimulation (P-STIM) via ear acupuncture: a randomized, double-blind, controlled pilot study in patients undergoing laparoscopic nephrctomyX]. Schmerz 21 154–159. 10.1007/s00482-006-0519-y
    1. Lim S. H., Anantharaman V., Teo W. S., Goh P. P., Tan A. T. (1998). Comparison of treatment of supraventricular tachycardia by Valsalva maneuver and carotid sinus massage. Ann. Emerg. Med. 31 30–35. 10.1016/s0196-0644(98)70277-x
    1. Liporace J., Hucko D., Morrow R., Barolat G., Nei M., Schnur J., et al. (2001). Vagal nerve stimulation: adjustments to reduce painful side effects. Neurology 57 885–886. 10.1212/wnl.57.5.885
    1. Litscher G., Wang L., Gaischek I. (2007). Electroencephalographic responses to laserneedle and punctual stimulation quantified by bispectral (BIS) monitoring: a pilot study to evaluate methods and instrumentation. Int. J. Laserneedle Med. 1 1–13. 10.5580/ce0
    1. Liu H., Yang Z., Huang L., Qu W., Hao H., Li L. (2017). Heart-rate variability indices as predictors of the response to vagus nerve stimulation in patients with drug-resistant epilepsy. Epilepsia 58 1015–1022. 10.1111/epi.13738
    1. Liu R.-P., Fang J.-L., Rong P.-J., Zhao Y., Meng H., Ben H., et al. (2013). Effects of electroacupuncture at auricular concha region on the depressive status of unpredictable chronic mild stress rat models. Evid. Based Complement. Alternat. Med. 2013:789674. 10.1155/2013/789674
    1. Liu X.-L., Tan J.-Y., Molassiotis A., Suen L. K. P., Shi Y. (2015). Acupuncture-point stimulation for postoperative pain control: a systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med. 2015:657809. 10.1155/2015/657809
    1. Lockard J. S., Congdon W. C., DuCharme L. L. (1990). Feasibility and safety of vagal stimulation in monkey model. Epilepsia 31 20–26.
    1. Lu K.-H., Cao J., Oleson S., Ward M. P., Phillips R. J., Powley T. L., et al. (2018). Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging. Neurogastroenterol. Motil. 30:e13380. 10.1111/nmo.13380
    1. Ma J., Zhang L., He G., Tan X., Jin X., Li C. (2016). Transcutaneous auricular vagus nerve stimulation regulates expression of growth differentiation factor 11 and activin-like kinase 5 in cerebral ischemia/reperfusion rats. J. Neurol. Sci. 369 27–35. 10.1016/j.jns.2016.08.004
    1. Mahadi K. M., Lall V. K., Deuchars S. A., Deuchars J. (2019). Cardiovascular autonomic effects of transcutaneous auricular nerve stimulation via the tragus in the rat involve spinal cervical sensory afferent pathways. Brain Stimul. 10.1016/j.brs.2019.05.002 [Epub ahead of print].
    1. Marshall R., Taylor I., Lahr C., Abell T. L., Espinoza I., Gupta N. K., et al. (2015). Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease. Clin. Med. Insights Gastroenterol. 8 55–59. 10.4137/CGast.S31779
    1. Matteoli G., Gomez-Pinilla P. J., Nemethova A., Di Giovangiulio M., Cailotto C., van Bree S. H., et al. (2013). A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63 938–948. 10.1136/gutjnl-2013-304676
    1. Mei Z.-G., Zeng Y.-B., Wang M.-Z., Liu X.-J., Xiao C.-Y., Li J.-H. (2013). [Effects of serum derived from rats undergone auricular acupuncture intervention on expression of TNF-alpha mRNA, cell adhesion factor-1 and vascular intercellular adhesion molecule-1 proteins of incubated cerebral microvascular endotheliocytes with diabetic injury]. Acupunct. Res. 37 440–446.
    1. Meng J., Wang Y., Li C. (2011). Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472 181–185. 10.1038/nature09921
    1. Mercante B., Deriu F., Rangon C.-M. (2018a). Auricular neuromodulation: the emerging concept beyond the stimulation of vagus and trigeminal nerves. Medicines 5:E10. 10.3390/medicines5010010
    1. Mercante B., Ginatempo F., Manca A., Melis F., Enrico P., Deriu F. (2018b). Anatomo-physiologic basis for auricular stimulation. Med. Acupunct. 30 141–150. 10.1089/acu.2017.1254
    1. Mertens A., Raedt R., Gadeyne S., Carrette E., Boon P., Vonck K. (2018). Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 15 527–539. 10.1080/17434440.2018.1507732
    1. Michalek-Sauberer A., Heinzl H., Sator-Katzenschlager S. M., Monov G., Knolle E., Kress H. G. (2007). Perioperative auricular electroacupuncture has no effect on pain and analgesic consumption after third molar tooth extraction. Anesth. Analg. 104 542–547. 10.1213/01.ane.0000253233.51490.dd
    1. Miller A. H., Raison C. L. (2015). The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16 22–34. 10.1038/nri.2015.5
    1. Miranda A., Taca A. (2017). Neuromodulation with percutaneous electrical nerve field stimulation is associated with reduction in signs and symptoms of opioid withdrawal: a multisite, retrospective assessment. Am. J. Drug Alcohol Abuse 44 56–63. 10.1080/00952990.2017.1295459
    1. Moore S. K. (2015). The Vagus Nerve: a Back Door for Brain Hacking. New York, NY: IEEE Spectrum.
    1. Napadow V., Edwards R. R., Cahalan C. M., Mensing G., Greenbaum S., Valovska A., et al. (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 13 777–789. 10.1111/j.1526-4637.2012.01385.x
    1. Ness T. J., Fillingim R. B., Randich A., Backensto E. M., Faught E. (2000). Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 86 81–85. 10.1016/s0304-3959(00)00237-2
    1. Neurath M. F. (2014). Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14 329–342. 10.1038/nri3661
    1. Nichols J. A., Nichols A. R., Smirnakis S. M., Engineer N. D., Kilgard M. P., Atzori M. (2011). Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 189 207–214. 10.1016/j.neuroscience.2011.05.024
    1. Nomura S., Mizuno N. (1984). Central distribution of primary afferent fibers in the Arnold’s nerve (the auricular branch of the vagus nerve): a transganglionic HRP study in the cat. Brain Res. 292 199–205. 10.1016/0006-8993(84)90756-x
    1. Nonis R., D’Ostilio K., Schoenen J., Magis D. (2017). Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia 37 1285–1293. 10.1177/0333102417717470
    1. Oleson T. (2002). Auriculotherapy stimulation for neuro-rehabilitation. Neurorehabilitation 17 49–62.
    1. Olofsson P. S., Levine Y. A., Caravaca A., Chavan S. S., Pavlov V. A., Faltys M., et al. (2015). Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectron. Med. 2 37–42. 10.15424/bioelectronmed.2015.00006
    1. Olshansky B., Sabbah H. N., Hauptman P. J., Colucci W. S. (2008). Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 118 863–871. 10.1161/circulationaha.107.760405
    1. Oshinsky M. L., Murphy A. L., Hekierski H., Cooper M., Simon B. J. (2014). Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain 155 1037–1042. 10.1016/j.pain.2014.02.009
    1. Pavlov V. A., Tracey K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8 743–754. 10.1038/nrendo.2012.189
    1. Payrits T., Ernst A., Ladits E., Pokorny H., Viragos I., Längle F. (2011). [Vagal stimulation - a new possibility for conservative treatment of peripheral arterial occlusion disease]. Zentralbl. Chir. 136 431–435. 10.1055/s-0031-1283739
    1. Peña D. F., Engineer N. D., McIntyre C. K. (2012). Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatry 73 1071–1077. 10.1016/j.biopsych.2012.10.021
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15 35–37. 10.1002/ca.1089
    1. Plachta D. T., Gierthmuehlen M., Cota O., Espinosa N., Boeser F., Herrera T. C., et al. (2014). Blood pressure control with selective vagal nerve stimulation and minimal side effects. J. Neural Eng. 11:036011. 10.1088/1741-2560/11/3/036011
    1. Plachta D. T., Zentner J., Aguirre D., Cota O., Stieglitz T., Gierthmuehlen M. (2016). Effect of cardiac-cycle-synchronized selective vagal stimulation on heart rate and blood pressure in rats. Adv. Ther. 33 1246–1261. 10.1007/s12325-016-0348-z
    1. Polak T., Ehlis A.-C., Langer J. B. M., Plichta M. M., Metzger F., Ringel T. M., et al. (2007). Non-invasive measurement of vagus activity in the brainstem - a methodological progress towards earlier diagnosis of dementias? J. Neural Transm. 114 613–619. 10.1007/s00702-007-0625-8
    1. Polak T., Markulin F., Ehlis A.-C., Langer J. B. M., Ringel T. M., Fallgatter A. J. (2009). Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural Transm. 116 1237–1242. 10.1007/s00702-009-0282-1
    1. Porter B. A., Khodaparast N., Fayyaz T., Cheung R. J., Ahmed S. S., Vrana W. A., et al. (2011). Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex. Cereb. Cortex 22 2365–2374. 10.1093/cercor/bhr316
    1. Randich A., Aicher S. A. (1988). Medullary substrates mediating antinociception produced by electrical stimulation of the vagus. Brain Res. 445 68–76. 10.1016/0006-8993(88)91075-x
    1. Randich A., Gebhart G. F. (1992). Vagal afferent modulation of nociception. Brain Res. Brain Res. Rev. 17 77–99. 10.1016/0165-0173(92)90009-b
    1. Ren K., Randich A., Gebhart G. F. (1988). Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors. Brain Res. 446 285–294. 10.1016/0006-8993(88)90887-6
    1. Ren K., Randich A., Gebhart G. F. (1991). Effects of electrical stimulation of vagal afferents on spinothalamic tract cells in the rat. Pain 44 311–319. 10.1016/0304-3959(91)90102-4
    1. Ren K., Zhuo M., Randich A., Gebhart G. F. (1993). Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats. J. Neurophysiol. 69 1530–1540. 10.1152/jn.1993.69.5.1530
    1. Richards D., Marley J. (1998). Stimulation of auricular acupuncture points in weight loss. Aust. Fam. Physician 27 73–77.
    1. Roberts A., Sithole A., Sedghi M., Walker C. A., Quinn T. M. (2016). Minimal adverse effects profile following implantation of periauricular percutaneous electrical nerve field stimulators: a retrospective cohort study. Med. Devices 9 389–393. 10.2147/MDER.S107426
    1. Rong P., Liu A., Zhang J., Wang Y., He W., Yang A., et al. (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin. Sci. 10.1042/CS20130518 [Epub ahead of print].
    1. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., et al. (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 195 172–179. 10.1016/j.jad.2016.02.031
    1. Rong P. J., Ma S. X. (2011). Electroacupuncture Zusanli (ST36) on release of nitric oxide in the gracile nucleus and improvement of sensory neuropathies in zucker diabetic fatty rats. Evid. Based Complement. Alternat. Med. 2011:134545. 10.1093/ecam/nep103
    1. Safi S., Ellrich J., Neuhuber W. (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anat. Rec. 299 1184–1191. 10.1002/ar.23391
    1. Sandkühler J. (1996). The organization and function of endogenous antinociceptive systems. Prog. Neurobiol. 50 49–81. 10.1016/s0301-0082(96)00031-7
    1. Sandkühler J. (2000). “Lang-lasting analgesia following TENS and acupuncture: spinal mechanisms beyand gate contral,” in Proceedings of the 9th World Congress on Pain, Vol. 16, Vienna, 359–369.
    1. Saper C. B. (2002). The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25 433–469. 10.1146/annurev.neuro.25.032502.111311
    1. Sator-Katzenschlager S. M., Michalek-Sauberer A. (2007). P-Stim auricular electroacupuncture stimulation device for pain relief. Expert Rev. Med. Devices 4 23–32. 10.1586/17434440.4.1.23
    1. Sator-Katzenschlager S. M., Scharbert G., Kozek-Langenecker S. A., Szeles J. C., Finster G., Schiesser A. W., et al. (2004). The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture. Anesth. Analg. 98 1359–1364. 10.1213/01.ane.0000107941.16173.f7
    1. Sator-Katzenschlager S. M., Szeles J. C., Scharbert G., Michalek-Sauberer A., Kober A., Heinze G., et al. (2003). Electrical stimulation of auricular acupuncture points is more effective than conventional manual auricular acupuncture in chronic cervical pain: a pilot study. Anesth. Analg. 97 1469–1473. 10.1213/01.ane.0000082246.67897.0b
    1. Sator-Katzenschlager S. M., Wölfler M. M., Kozek-Langenecker S. A., Sator K., Sator P.-G., Li B., et al. (2006). Auricular electro-acupuncture as an additional perioperative analgesic method during oocyte aspiration in IVF treatment. Hum. Reprod. 21 2114–2120. 10.1093/humrep/del110
    1. Schachter S. C., Saper C. B. (1998). Vagus nerve stimulation. Epilepsia 39 677–686.
    1. Schlager O., Gschwandtner M. E., Mlekusch I., Herberg K., Frohner T., Schillinger M., et al. (2011). Auricular electroacupuncture reduces frequency and severity of Raynaud attacks. Wien. Klin. Wochenschr. 123 112–116. 10.1007/S00508-011-1531-5
    1. Schukro R. P., Heiserer C., Michalek-Sauberer A., Gleiss A., Sator-Katzenschlager S. (2013). The effects of auricular electroacupuncture on obesity in female patients--a prospective randomized placebo-controlled pilot study. Complement. Ther. Med. 22 21–25. 10.1016/j.ctim.2013.10.002
    1. Schweitzer P., Teichholz L. E. (1985). Carotid sinus massage. Its diagnostic and therapeutic value in arrhythmias. Am. J. Med. 78 645–654. 10.1016/0002-9343(85)90408-5
    1. Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Kumfu S., Kumphune S., et al. (2014). Vagus nerve stimulation initiated late during ischemia, but not reperfusion, exerts cardioprotection via amelioration of cardiac mitochondrial dysfunction. Heart Rhythm 11 2278–2287. 10.1016/j.hrthm.2014.08.001
    1. Shiozawa P., da Silva M. E., de Carvalho T. C., Cordeiro Q., Brunoni A. R., Fregni F. (2014). Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq. Neuropsiquiatr. 72 542–547. 10.1590/0004-282x20140061
    1. Smith D. C., Modglin A. A., Roosevelt R. W., Neese S. L., Jensen R. A., Browning R. A., et al. (2005). Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J. Neurotrauma 22 1485–1502. 10.1089/neu.2005.22.1485
    1. Sobocki J., Królczyk G., Herman R. M., Matyja A., Thor P. J. (2005). Influence of vagal nerve stimulation on food intake and body weight–results of experimental studies. J. Physiol. Pharmacol. 56 27–33.
    1. Standring S. (2016). Gray’s Anatomy, the Anatomical Basis of Clinical Practice, 41st Edn Amsterdam: Elsevier.
    1. Stavrakis S., Humphrey M. B., Scherlag B. J., Hu Y., Jackman W. M., Nakagawa H., et al. (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65 867–875. 10.1016/j.jacc.2014.12.026
    1. Stavrakis S., Po S. S. (2015). Neuroimmunomodulation: a new frontier of treating cardiovascular diseases. Trends Cardiovasc. Med. 26 12–13. 10.1016/j.tcm.2015.04.007
    1. Stavrakis S., Scherlag B. J., Fan Y., Liu Y., Mao J., Varma V., et al. (2013). Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. J. Interv. Card. Electrophysiol. 36 199–208. 10.1007/s10840-012-9752-8
    1. Steenbergen L., Sellaro R., Stock A.-K., Verkuil B., Beste C., Colzato L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25 773–778. 10.1016/j.euroneuro.2015.03.015
    1. Stefan H., Kreiselmeyer G., Kerling F., Kurzbuch K., Rauch C., Heers M., et al. (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53 e115–e118. 10.1111/j.1528-1167.2012.03492.x
    1. Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R. (2015). Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J. Headache Pain 16:543. 10.1186/s10194-015-0543-3
    1. Szekely M. (2000). The vagus nerve in thermoregulation and energy metabolism. Auton. Neurosci. 85 26–38. 10.1016/s1566-0702(00)00217-4
    1. Szeles J. C., Hoda M. R., Polterauer P. (2001). Application of electrostimulation acupuncture (P-Stim) in clinical practice. Pain News Austrian Pain Assoc. 1 1–3.
    1. Szeles J. C., Kampusch S., Kaniusas E. (2013). “Peripheral blood perfusion controlled by auricular vagus nerve stimulation,” in Proceedings of the 17th International Conference on Biomedical Engineering, Lithuania, 73–77.
    1. Széles J. C., Litscher G. (2004). Objectivation of cerebral effects with a new continuous electrical auricular stimulation technique for pain management. Neurol. Res. 26 797–800. 10.1179/016164104225016100
    1. Szeles J. C., Varoneckas G., Kaniusas E. (2010). “Auricular electrical stimulation (P-Stim) for insomnia treatment using remote control,” in Proceedings of the International eHealth, Telemedicine and Health ICT Forum for Education, Networking and Business (Med-e-Tel), Luxembourg, 747–751.
    1. Tekdemir I., Aslan A., Elhan A. (1998). A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold’s ear-cough reflex. Surg. Radiol. Anat. 20 253–257. 10.1007/bf01628484
    1. Thayer J. F., Fischer J. E. (2008). Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J. Intern. Med. 265 439–447. 10.1111/j.1365-2796.2008.02023.x
    1. Thayer J. F., Yamamoto S. S., Brosschot J. F. (2009). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141 122–131. 10.1016/j.ijcard.2009.09.543
    1. Thomas N. (2017). Influence of the Percutaneous Auricular Vagus Nerve Stimulation on Clinical Parameters, Lab Values, and wound Status in Patients with Diabetic Foot Syndrome and Healthy Control Persons. Diploma thesis, Medical University of Vienna, Vienna.
    1. Tiedt N., Religa A. (1979). Vagal control of coronary blood flow in dogs. Basic Res. Cardiol. 74 266–276.
    1. Todd A. J. (2010). Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11 823–836. 10.1038/nrn2947
    1. Tracey K. J. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Investig. 117 289–296. 10.1172/jci30555
    1. Tracey K. J. (2009). Reflex control of immunity. Nat. Rev. Immunol. 9 418–428. 10.1038/nri2566
    1. Trepel M. (2017). Neuroanatomy - Structure and Function. Munich: Urban & Fischer.
    1. Tsang H. C., Lam C. S., Chu P. W., Yap J., Fung T. Y., Cheing G. L. Y. (2011). A randomized controlled trial of auricular transcutaneous electrical nerve stimulation for managing posthysterectomy pain. Evid. Based Complement. Alternat. Med. 2011:276769. 10.1155/2011/276769
    1. Usichenko T., Hacker H., Lotze M. (2017). Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10 1042–1044. 10.1016/j.brs.2017.07.013
    1. Val-Laillet D., Biraben A., Randuineau G., Malbert C. H. (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55 245–252. 10.1016/j.appet.2010.06.008
    1. Vanoli E., De Ferrari G. M., Stramba-Badiale M., Hull S. S., Foreman R. D., Schwartz P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res. 68 1471–1481. 10.1161/01.res.68.5.1471
    1. Wang S., Zhai X., Li S., McCabe M. F., Wang X., Rong P. (2015). Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats. PLoS One 10:e0124195. 10.1371/journal.pone.0124195
    1. Wang Z., Zhou X., Sheng X., Yu L., Jiang H. (2015). Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int. J. Cardiol. 187 637–638. 10.1016/j.ijcard.2015.03.430
    1. Wang Z., Yu L., Huang B., Wang S., Liao K., Saren G., et al. (2014a). Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor β1. J. Cardiovasc. Pharmacol. 65 342–348. 10.1097/FJC.0000000000000201
    1. Wang Z., Yu L., Wang S., Huang B., Liao K., Saren G., et al. (2014b). Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ. Heart Fail. 7 1014–1021. 10.1161/CIRCHEARTFAILURE.114.001564
    1. Watkins L. R., Wiertelak E. P., Goehler L. E., Mooney-Heiberger K., Martinez J., Furness L., et al. (1994). Neurocircuitry of illness-induced hyperalgesia. Brain Res. 639 283–299. 10.1016/0006-8993(94)91742-6
    1. Wen H. L., Ng Y. H., Ho W. K., Fung K. P., Wong H. K., Ma L., et al. (1978). Acupuncture in narcotic withdrawal: a preliminary report on biochemical changes in the blood and urine of heroin addicts. Bull. Narc. 30 31–39.
    1. Williams E. K., Chang R. B., Strochlic D. E., Umans B. D., Lowell B. B., Liberles S. D. (2016). Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166 209–221. 10.1016/j.cell.2016.05.011
    1. Xiong J., Xue F. S., Liu J. H., Xu Y. C., Liao X., Zhang Y. M., et al. (2009). Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients. Med. Hypotheses 73 938–941. 10.1016/j.mehy.2009.06.033
    1. Yakunina N., Kim S. S., Nam E.-C. (2016). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20 290–300. 10.1111/ner.12541
    1. Ylikoski J., Pirvola U., Aarnisalo A., Ylikoski M. (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngol. 137 426–431. 10.1080/00016489.2016.1269197
    1. Yu L., Scherlag B. J., Li S., Fan Y., Dyer J., Male S., et al. (2012). Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm 10 428–435. 10.1016/j.hrthm.2012.11.019
    1. Zagon A., Kemeny A. A. (2000). Slow hyperpolarization in cortical neurons: a possible mechanism behind vagus nerve simulation therapy for refractory epilepsy? Epilepsia 41 1382–1389. 10.1111/j.1528-1157.2000.tb00113.x
    1. Zamotrinsky A., Afanasiev S., Karpov R. S., Cherniavsky A. (1997). Effects of electrostimulation of the vagus afferent endings in patients with coronary artery disease. Coron. Artery Dis. 8 551–557.
    1. Zamotrinsky A. V., Kondratiev B., de Jong J. W. (2001). Vagal neurostimulation in patients with coronary artery disease. Auton. Neurosci. 88 109–116. 10.1016/s1566-0702(01)00227-2
    1. Zhang X., Cao B., Yan N., Liu J., Wang J., Tung V. O. V., et al. (2012). Vagus nerve stimulation modulates visceral pain-related affective memory. Behav. Brain Res. 236 8–15. 10.1016/j.bbr.2012.08.027
    1. Zhang Y., Popović Z. B., Bibevski S., Fakhry I., Sica D. A., Van Wagoner D. R., et al. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ. Heart Fail. 2 692–699. 10.1161/CIRCHEARTFAILURE.109.873968
    1. Zhao M., He X., Bi X.-Y., Yu X.-J., Wier W. G., Zang W.-J. (2013). Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res. Cardiol. 108 1–16. 10.1007/s00395-013-0345-1
    1. Zhao Y. X., He W., Jing X. H., Liu J. L., Rong P.-J., Ben H., et al. (2012). Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid. Based Complement. Alternat. Med. 2012:627023. 10.1155/2012/627023
    1. Zulfiqar U., Jurivich D. A., Gao W., Singer D. H. (2010). Relation of high heart rate variability to healthy longevity. Am. J. Cardiol. 105 1181–1185. 10.1016/j.amjcard.2009.12.022

Source: PubMed

3
Subscribe