Effects of robotic priming of bilateral arm training, mirror therapy, and impairment-oriented training on sensorimotor and daily functions in patients with chronic stroke: study protocol of a single-blind, randomized controlled trial

Yi-Chen Lee, Yi-Chun Li, Keh-Chung Lin, Grace Yao, Ya-Ju Chang, Ya-Yun Lee, Chien-Ting Liu, Wan-Ling Hsu, Yi-Hsuan Wu, Ho-Ta Chu, Ting-Xuan Liu, Yi-Ping Yeh, Chieh Chang, Yi-Chen Lee, Yi-Chun Li, Keh-Chung Lin, Grace Yao, Ya-Ju Chang, Ya-Yun Lee, Chien-Ting Liu, Wan-Ling Hsu, Yi-Hsuan Wu, Ho-Ta Chu, Ting-Xuan Liu, Yi-Ping Yeh, Chieh Chang

Abstract

Background: Combining robotic therapy (RT) with task-oriented therapy is an emerging strategy to facilitate motor relearning in stroke rehabilitation. This study protocol will compare novel rehabilitation regimens that use bilateral RT as a priming technique to augment two task-oriented therapies: mirror therapy (MT) and bilateral arm training (BAT) with a control intervention: RT combined with impairment-oriented training (IOT).

Methods: This single-blind, randomized, comparative efficacy study will involve 96 participants with chronic stroke. Participants will be randomized into bilateral RT+MT, bilateral RT+BAT, and bilateral RT+IOT groups and receive 18 intervention sessions (90 min/day, 3 d/week for 6 weeks). The outcomes will include the Fugl-Meyer Assessment, Stroke Impact Scale version 3.0, Medical Research Council scale, Revised Nottingham Sensory Assessment, ABILHAND Questionnaire, and accelerometer and will be assessed at baseline, after treatment, and at the 3-month follow-up. Analysis of covariance and the chi-square automatic interaction detector method will be used to examine the comparative efficacy and predictors of outcome, respectively, after bilateral RT+MT, bilateral RT+BAT, and bilateral RT+IOT.

Discussion: The findings are expected to contribute to the research and development of robotic devices, to update the evidence-based protocols in postacute stroke care programs, and to investigate the use of accelerometers for monitoring activity level in real-life situations, which may in turn promote home-based practice by the patients and their caregivers. Directions for further studies and empirical implications for clinical practice will be further discussed in upper-extremity rehabilitation after stroke.

Trial registration: This trial was registered December 12, 2018, at www.

Clinicaltrials: gov ( NCT03773653 ).

Keywords: Bilateral arm training; Bilateral motor priming; Impairment-oriented training; Mirror therapy; Randomized controlled trial; Stroke; Upper extremity rehabilitation.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

References

    1. Pignolo L. Robotics in neuro-rehabilitation. J Rehabil Med. 2009;41(12):955–960. doi: 10.2340/16501977-0434.
    1. Oujamaa L, Relave I, Froger J, Mottet D, Pelissier JY. Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med. 2009;52(3):269–293. doi: 10.1016/j.rehab.2008.10.003.
    1. Lin KC, Chen YA, Chen CL, Wu CY, Chang YF. The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabil Neural Repair. 2010;24(1):42–51. doi: 10.1177/1545968309345268.
    1. Stoykov ME, Madhavan S. Motor priming in neurorehabilitation. J Neurol Phys Ther. 2015;39(1):33–42. doi: 10.1097/NPT.0000000000000065.
    1. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–121. doi: 10.1177/1545968307305457.
    1. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015;2015(11):CD006876.
    1. Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;(4):CD006876. 10.1002/14651858.CD006876.pub2.
    1. Hung CS, Hsieh YW, Wu CY, Chen YJ, Lin KC, Chen CL, et al. Hybrid rehabilitation therapies on upper-limb function and goal attainment in chronic stroke. OTJR (Thorofare N J). 2019;39(2):116–123.
    1. Lin KC, Huang PC, Chen YT, Wu CY, Huang WL. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabil Neural Repair. 2014;28(2):153–162. doi: 10.1177/1545968313508468.
    1. Wu CY, Huang PC, Chen YT, Lin KC, Yang HW. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2013;94(6):1023–1030. doi: 10.1016/j.apmr.2013.02.007.
    1. Rossiter HE, Borrelli MR, Borchert RJ, Bradbury D, Ward NS. Cortical mechanisms of mirror therapy after stroke. Neurorehabil Neural Repair. 2015;29(5):444–452. doi: 10.1177/1545968314554622.
    1. Lewis GN, Byblow WD. Neurophysiological and behavioural adaptations to a bilateral training intervention in individuals following stroke. Clin Rehabil. 2004;18(1):48–59. doi: 10.1191/0269215504cr701oa.
    1. McCombe Waller S, Whitall J, Jenkins T, Magder LS, Hanley DF, Goldberg A, et al. Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke. BMC Neurol. 2014;14:236. doi: 10.1186/s12883-014-0236-6.
    1. Coupar F, Pollock A, van Wijck F, Morris J, Langhorne P. Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev. 2010;(4):CD006432. 10.1002/14651858.CD006432.pub2.
    1. van Delden AE, Peper CE, Beek PJ, Kwakkel G. Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J Rehabil Med. 2012;44(2):106–117. doi: 10.2340/16501977-0928.
    1. Rosenthal DA, Dalton JA, Gervey R. Analyzing vocational outcomes of individuals with psychiatric disabilities who received state vocational rehabilitation services: a data mining approach. Int J Soc Psychiatry. 2007;53(4):357–368. doi: 10.1177/0020764006074555.
    1. Hsieh YW, Wu CY, Wang WE, Lin KC, Chang KC, Chen CC, et al. Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial. Clin Rehabil. 2017;31(2):225–233. doi: 10.1177/0269215516633275.
    1. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
    1. Charalambous CP. Interrater reliability of a Modified Ashworth Scale of muscle spasticity. In: Banaszkiewicz P, Kader D, editors. Classic Papers in Orthopaedics. London: Springer; 2014. pp. 415–417.
    1. Skidmore ER, Rogers JC, Chandler LS, Holm MB. Dynamic interactions between impairment and activity after stroke: examining the utility of decision analysis methods. Clin Rehabil. 2006;20(6):523–535. doi: 10.1191/0269215506cr980oa.
    1. Hung CS, Hsieh YW, Wu CY, Lin YT, Lin KC, Chen CL. The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. PM R. 2016;8(8):721–729. doi: 10.1016/j.pmrj.2016.01.008.
    1. Li YC, Wu CY, Hsieh YW, Lin KC, Yao G, Chen CL, et al. The priming effects of mirror visual feedback on bilateral task practice: a randomized controlled study. Occup Ther Int. 2019;2019:3180306. doi: 10.1155/2019/3180306.
    1. Lee YY, Lin KC, Wu CY, Liao CH, Lin JC, Chen CL. Combining afferent stimulation and mirror therapy for improving muscular, sensorimotor, and daily functions after chronic stroke: a randomized, placebo-controlled study. Am J Phys Med Rehabil. 2015;94(10 Suppl 1):859–868. doi: 10.1097/PHM.0000000000000271.
    1. Platz T, Elsner B, Mehrholz J. Arm basis training and arm ability training: two impairment-oriented exercise training techniques for improving arm function after stroke. The Cochrane Library. 2015.
    1. Platz T, Winter T, Muller N, Pinkowski C, Eickhof C, Mauritz KH. Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil. 2001;82(7):961–968. doi: 10.1053/apmr.2001.23982.
    1. Hsieh YW, Wu CY, Lin KC, Chang YF, Chen CL, Liu JS. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke. 2009;40(4):1386–1391. doi: 10.1161/STROKEAHA.108.530584.
    1. Duncan PW, Bode RK, Min Lai S, Perera S. Glycine Antagonist in Neuroprotection Americans I. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003;84(7):950–963. doi: 10.1016/S0003-9993(03)00035-2.
    1. Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000;29(3):223–228. doi: 10.1093/ageing/29.3.223.
    1. Lincoln N, Jackson J, Adams S. Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy. 1998;84(8):358–365. doi: 10.1016/S0031-9406(05)61454-X.
    1. Penta M, Tesio L, Arnould C, Zancan A, Thonnard JL. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke. 2001;32(7):1627–1634. doi: 10.1161/01.STR.32.7.1627.
    1. Hamilton BB, Laughlin JA, Fiedler RC, Granger CV. Interrater reliability of the 7-level functional independence measure (FIM) Scand J Rehabil Med. 1994;26(3):115–119.
    1. Jones F, Partridge C, Reid F. The Stroke Self-Efficacy Questionnaire: measuring individual confidence in functional performance after stroke. J Clin Nurs. 2008;17(7B):244–252. doi: 10.1111/j.1365-2702.2008.02333.x.
    1. Chuang LL, Lin KC, Hsu AL, Wu CY, Chang KC, Li YC, et al. Reliability and validity of a vertical numerical rating scale supplemented with a faces rating scale in measuring fatigue after stroke. Health Qual Life Outcomes. 2015;13:91. doi: 10.1186/s12955-015-0290-9.
    1. Lemmens RJ, Timmermans AA, Janssen-Potten YJ, Smeets RJ, Seelen HA. Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: a systematic review. BMC Neurol. 2012;12:21. doi: 10.1186/1471-2377-12-21.
    1. Stinear JW, Byblow WD. Rhythmic bilateral movement training modulates corticomotor excitability and enhances upper limb motricity poststroke: a pilot study. J Clin Neurophysiol. 2004;21(2):124–131. doi: 10.1097/00004691-200403000-00008.
    1. Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–1569. doi: 10.1007/s10072-017-2995-5.
    1. Cauraugh JH, Summers JJ. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol. 2005;75(5):309–320. doi: 10.1016/j.pneurobio.2005.04.001.
    1. Byblow WD, Stinear CM, Smith MC, Bjerre L, Flaskager BK, McCambridge AB. Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PLoS One. 2012;7(3):e33882. doi: 10.1371/journal.pone.0033882.
    1. Sathian K, Greenspan AI, Wolf SL. Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil Neural Repair. 2000;14(1):73–76. doi: 10.1177/154596830001400109.
    1. Hamzei F, Lappchen CH, Glauche V, Mader I, Rijntjes M, Weiller C. Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere. Neurorehabil Neural Repair. 2012;26(5):484–496. doi: 10.1177/1545968311427917.
    1. Serino A, Farne’ A, Rinaldesi ML, Haggard P, La’davas E. Can vision of the body ameliorate impaired somatosensory function? Neuropsychologia. 2007;45:1101–1107. doi: 10.1016/j.neuropsychologia.2006.09.013.
    1. Kessner SS, Schlemm E, Cheng B, Bingel U, Fiehler J, Gerloff C, et al. Somatosensory deficits after ischemic stroke. Stroke. 2019;50(5):1116–1123. doi: 10.1161/STROKEAHA.118.023750.

Source: PubMed

3
Subscribe