Prospective association between dietary pesticide exposure profiles and type 2 diabetes risk in the NutriNet-Santé cohort

Pauline Rebouillat, Rodolphe Vidal, Jean-Pierre Cravedi, Bruno Taupier-Letage, Laurent Debrauwer, Laurence Gamet-Payrastre, Hervé Guillou, Mathilde Touvier, Léopold K Fezeu, Serge Hercberg, Denis Lairon, Julia Baudry, Emmanuelle Kesse-Guyot, Pauline Rebouillat, Rodolphe Vidal, Jean-Pierre Cravedi, Bruno Taupier-Letage, Laurent Debrauwer, Laurence Gamet-Payrastre, Hervé Guillou, Mathilde Touvier, Léopold K Fezeu, Serge Hercberg, Denis Lairon, Julia Baudry, Emmanuelle Kesse-Guyot

Abstract

Background: Studies focusing on dietary pesticides in population-based samples are scarce and little is known about potential mixture effects. We aimed to assess associations between dietary pesticide exposure profiles and Type 2 Diabetes (T2D) among NutriNet-Santé cohort participants.

Methods: Participants completed a Food Frequency Questionnaire at baseline, assessing conventional and organic food consumption. Exposures to 25 active substances used in European Union pesticides were estimated using the Chemisches und Veterinäruntersuchungsamt Stuttgart residue database accounting for farming practices. T2D were identified through several sources. Exposure profiles were established using Non-Negative Matrix Factorization (NMF), adapted for sparse data. Cox models adjusted for known confounders were used to estimate hazard ratios (HR) and 95% confidence interval (95% CI), for the associations between four NMF components, divided into quintiles (Q) and T2D risk.

Results: The sample comprised 33,013 participants aged 53 years old on average, including 76% of women. During follow-up (median: 5.95 years), 340 incident T2D cases were diagnosed. Positive associations were detected between NMF component 1 (reflecting highest exposure to several synthetic pesticides) and T2D risk on the whole sample: HRQ5vsQ1 = 1.47, 95% CI (1.00, 2.18). NMF Component 3 (reflecting low exposure to several synthetic pesticides) was associated with a decrease in T2D risk, among those with high dietary quality only (high adherence to French dietary guidelines, including high plant foods consumption): HRQ5vsQ1 = 0.31, 95% CI (0.10, 0.94).

Conclusions: These findings suggest a role of dietary pesticide exposure in T2D risk, with different effects depending on which types of pesticide mixture participants are exposed to. These associations need to be confirmed in other types of studies and settings, and could have important implications for developing prevention strategies (regulation, dietary guidelines).

Trial registration: This study is registered in ClinicalTrials.gov ( NCT03335644 ).

Keywords: Dietary exposure; Environmental health; Epidemiology; Organic farming; Pesticides; Type 2 diabetes.

Conflict of interest statement

None declared.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Scoring system for sPNNS-GS2 score
Fig. 2
Fig. 2
Flowchart for the sample selection, NutriNet-Santé Study, France, 2014 (N = 33,013)

References

    1. World Health Organization. Diabetes [Internet]. 2020. Available from: . Cited 2 Feb 2021.
    1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. doi: 10.1016/j.diabres.2018.02.023.
    1. World Health Organization. WHO reveals leading causes of death and disability worldwide: 2000-2019 [Internet]. 2020. Available from: . Cited 2 Feb 2021.
    1. Schwingshackl L, Hoffmann G, Lampousi A-M, Knüppel S, Iqbal K, Schwedhelm C, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol Springer. 2017;32:363–375. doi: 10.1007/s10654-017-0246-y.
    1. Rezg R, Mornagui B, El-Fazaa S, Gharbi N. Organophosphorus pesticides as food chain contaminants and type 2 diabetes: a review. Trends Food Sci Technol. 2010;21:345–357. doi: 10.1016/j.tifs.2010.04.006.
    1. Longnecker M, Daniels J. Environmental contaminants as etiologic factors for diabetes. Environ Health Perspect. 2001;109:871–876.
    1. Lind PM, Lind L. Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia. 2018;61:1495–1502. doi: 10.1007/s00125-018-4621-3.
    1. Han X, Zhang F, Meng L, Xu Y, Li Y, Li A, et al. Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China. Ecotoxicol Environ Saf. 2020;190:110125. doi: 10.1016/j.ecoenv.2019.110125.
    1. Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernández AF, Ntzani EE, et al. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ Int. 2016;91:60–68. doi: 10.1016/j.envint.2016.02.013.
    1. Juntarawijit C, Juntarawijit Y. Association between diabetes and pesticides: a case-control study among Thai farmers. Environ Health Prev Med. 2018;23:3. doi: 10.1186/s12199-018-0692-5.
    1. Jaacks LM, Staimez LR. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environ Int. 2015;76:57–70. doi: 10.1016/j.envint.2014.12.001.
    1. Starling AP, Umbach DM, Kamel F, Long S, Sandler DP, Hoppin JA. Pesticide use and incident diabetes among wives of farmers in the Agricultural Health Study. Occup Environ Med. 2014;71:629–35. doi: 10.1136/oemed-2013-101659.
    1. Montgomery MP, Kamel F, Saldana TM, Alavanja MCR, Sandler DP. Incident Diabetes and Pesticide Exposure among Licensed Pesticide Applicators: Agricultural Health Study, 1993–2003. Am J Epidemiol Oxford Academic. 2008;167:1235–1246. doi: 10.1093/aje/kwn028.
    1. Raafat N, Abass MA, Salem HM. Malathion exposure and insulin resistance among a group of farmers in Al-Sharkia governorate. Clin Biochem. 2012;45:1591–1595. doi: 10.1016/j.clinbiochem.2012.07.108.
    1. Taxvig C, Dreisig K, Boberg J, Nellemann C, Schelde AB, Pedersen D, et al. Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARγ activation. Mol Cell Endocrinol. 2012;361:106–115. doi: 10.1016/j.mce.2012.03.021.
    1. Sun Y, Liu B, Du Y, Snetselaar LG, Sun Q, Hu FB, et al. Inverse association between organic food purchase and diabetes mellitus in US adults. Nutrients. 2018;10:1877. doi: 10.3390/nu10121877.
    1. European Food Safety Authority. The European Union report on pesticide residues in food. EFSA J. 2017;(15):e04791.
    1. Monitoring data on pesticide residues in food results on organic versus conventionally produced food. EFSA Support Publ. 2018;15:1397E.
    1. Oates L, Cohen M, Braun L, Schembri A, Taskova R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res. 2014;132:105–111. doi: 10.1016/j.envres.2014.03.021.
    1. Baudry J, Debrauwer L, Durand G, Limon G, Delcambre A, Vidal R, et al. Urinary pesticide concentrations in French adults with low and high organic food consumption: results from the general population-based NutriNet-Santé. J Expo Sci Environ Epidemiol. 2018. Available from: . Cited 23 Nov 2018.
    1. Bradman A, Quirós-Alcalá L, Castorina R, Aguilar Schall R, Camacho J, Holland NT, et al. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environ Health Perspect. 2015;123:1086–1093. doi: 10.1289/ehp.1408660.
    1. Curl CL, Beresford SAA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, et al. Estimating Pesticide Exposure from Dietary Intake and Organic Food Choices: The Multi-Ethnic Study of Atherosclerosis (MESA) Environ Health Perspect. 2015;123:475–483. doi: 10.1289/ehp.1408197.
    1. Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E, et al. The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health. 2010;10:242. doi: 10.1186/1471-2458-10-242.
    1. Touvier M, Méjean C, Kesse-Guyot E, Pollet C, Malon A, Castetbon K, et al. Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. Eur J Epidemiol. 2010;25:287–296. doi: 10.1007/s10654-010-9433-9.
    1. Touvier M, Kesse-Guyot E, Méjean C, Pollet C, Malon A, Castetbon K, et al. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr. 2011;105:1055–1064. doi: 10.1017/S0007114510004617.
    1. Vergnaud A-C, Touvier M, Méjean C, Kesse-Guyot E, Pollet C, Malon A, et al. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int J Public Health. 2011;56:407–417. doi: 10.1007/s00038-011-0257-5.
    1. Lassale C, Castetbon K, Laporte F, Camilleri GM, Deschamps V, Vernay M, et al. Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. Br J Nutr Cambridge University Press. 2015;113:953–962. doi: 10.1017/S0007114515000057.
    1. Lassale C, Castetbon K, Laporte F, Deschamps V, Vernay M, Camilleri GM, et al. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. J Acad Nutr Diet. 2016;116:427–438.e5. doi: 10.1016/j.jand.2015.09.017.
    1. Lassale C, Péneau S, Touvier M, Julia C, Galan P, Hercberg S, et al. Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. J Med Internet Res. 2013;15:e152. doi: 10.2196/jmir.2575.
    1. Baudry J, Méjean C, Allès B, Péneau S, Touvier M, Hercberg S, et al. Contribution of Organic Food to the Diet in a Large Sample of French Adults (the NutriNet-Santé Cohort Study) Nutrients. 2015;7:8615–8632. doi: 10.3390/nu7105417.
    1. Kesse-Guyot E, Castetbon K, Touvier M, Hercberg S, Galan P. Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann Nutr Metab. 2010;57:153–162. doi: 10.1159/000321680.
    1. Le Moullec N, Deheeger M, Hercberg S, Preziosi P, Monteiro P, Valeix P, et al. Validation du manuel-photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX. Cah nutr diét. 1996;31:158–64.
    1. Etude NutriNet-Santé . Table de Composition des Aliments de l’étude NutriNet-Santé (Nutrinet-Santé Study Food Composition Database) 2013.
    1. Untersuchungsämter Baden-Württemberg. Chemisches und Veterinäruntersuchungsamt Stuttgart (Startseite) [Internet]. Available from: . Cited 29 May 2019.
    1. Baudry J, Pointereau P, Seconda L, Vidal R, Taupier-Letage B, Langevin B, et al. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am J Clin Nutr. 2019;109:1173–1188. doi: 10.1093/ajcn/nqy361.
    1. European Food Safety Authority. The European Union Report on Pesticide Residues in Food. EFSA J. 2016;(14):e04611.
    1. GEMS/Food Euro. Second workshop on reliable evaluation of low-level contamination of food. Report on a workshop in the frame of GEMS/Food-Euro. Geneva: WHO; 1995.
    1. European Food Safety Authority. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010;8:1557.
    1. Rebouillat P, Vidal R, Cravedi J-P, Taupier-Letage B, Debrauwer L, Gamet-Payrastre L, et al. Estimated dietary pesticide exposure from plant-based foods using NMF-derived profiles in a large sample of French adults. Eur J Nutr. 2020. Available from: 10.1007/s00394-020-02344-8. Cited 31 Jul 2020.
    1. Bognár A. Tables on weight yield of food and retention factors of food constituents for the calculation of nutrient composition of cooked foods (dishes). Karlsruhe: BFE; 2002.
    1. Bergström L. Nutrient losses and gains in the preparation of foods. Rapport 32/94. Upps Livsmedelsverket Natl Food Adm [Internet]. 1994; Available from:
    1. Yigit N, Velioglu YS. Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr [Internet]. 2019; Available from: 10.1080/10408398.2019.1702501. Cited 8 Jan 2020
    1. Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112(5):794–811. doi: 10.1017/S0007114514001366.
    1. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9:755–762. doi: 10.1079/PHN2005898.
    1. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Méjean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé) BMJ. 2019;365:l1451. doi: 10.1136/bmj.l1451.
    1. High Council for Public Health. French Nutrition and Health Programme’s dietary guidelines for adults for the period 2017–2021. 2017;7.
    1. Chaltiel D, Adjibade M, Deschamps V, Touvier M, Hercberg S, Julia C, et al. Programme National Nutrition Santé – guidelines score 2 (PNNS-GS2): development and validation of a diet quality score reflecting the 2017 French dietary guidelines. Br J Nutr. 2019;122(3):331–42.
    1. Martínez-González MA, Sánchez-Tainta A, Corella D, Salas-Salvadó J, Ros E, Arós F, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100(Suppl 1):320S–S328. doi: 10.3945/ajcn.113.071431.
    1. Keaver L, Ruan M, Chen F, Du M, Ding C, Wang J, et al. Plant- and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2020;18:1–11. Cambridge University Press.
    1. Ferrari P, Slimani N, Ciampi A, Trichopoulou A, Naska A, Lauria C, et al. Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC) Public Health Nutr Cambridge University Press. 2002;5:1329–1345. doi: 10.1079/PHN2002409.
    1. Seung D, Lee L. Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst. 2001;13:556–562.
    1. Béchaux C, Zetlaoui M, Tressou J, Leblanc J-C, Héraud F, Crépet A. Identification of pesticide mixtures and connection between combined exposure and diet. Food Chem Toxicol. 2013;59:191–198. doi: 10.1016/j.fct.2013.06.006.
    1. Traoré T, Béchaux C, Sirot V, Crépet A. To which chemical mixtures is the French population exposed? Mixture identification from the second French Total Diet Study. Food Chem Toxicol. 2016;98:179–188. doi: 10.1016/j.fct.2016.10.028.
    1. Traoré T, Forhan A, Sirot V, Kadawathagedara M, Heude B, Hulin M, et al. To which mixtures are French pregnant women mainly exposed? A combination of the second French total diet study with the EDEN and ELFE cohort studies. Food Chem Toxicol. 2018;111:310–328. doi: 10.1016/j.fct.2017.11.016.
    1. Mancini FR, Frenoy P, Fiolet T, Fagherazzi G, Crépet A. Identification of chemical mixtures to which women are exposed through the diet: Results from the French E3N cohort. Environ Int. 2021;152:106467. doi: 10.1016/j.envint.2021.106467.
    1. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:367. doi: 10.1186/1471-2105-11-367.
    1. Lee D-H, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs DR. Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS ONE. 2011;6:e15977. doi: 10.1371/journal.pone.0015977.
    1. Tang M, Chen K, Yang F, Liu W. Exposure to Organochlorine Pollutants and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLOS One. 2014;9:e85556. doi: 10.1371/journal.pone.0085556.
    1. Park J, Park SK, Choi Y-H. Environmental pyrethroid exposure and diabetes in US adults. Environ Res. 2019;172:399–407. doi: 10.1016/j.envres.2018.12.043.
    1. Bao W, Liu B, Simonsen DW, Lehmler H-J. Association Between Exposure to Pyrethroid Insecticides and Risk of All-Cause and Cause-Specific Mortality in the General US Adult Population. JAMA Intern Med. 2020;180:367. doi: 10.1001/jamainternmed.2019.6019.
    1. Liang X, Feswick A, Simmons D, Martyniuk CJ. Environmental toxicology and omics: A question of sex. J Proteomics. 2018;172:152–164. doi: 10.1016/j.jprot.2017.09.010.
    1. Kesse-Guyot E, Rebouillat P, Payrastre L, Allès B, Fezeu LK, Druesne-Pecollo N, et al. Prospective association between organic food consumption and the risk of type 2 diabetes: findings from the NutriNet-Santé cohort study. Int J Behav Nutr Phys Act. 2020;17:136. doi: 10.1186/s12966-020-01038-y.
    1. Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, et al. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules. 2020;10:1702. doi: 10.3390/biom10121702.
    1. Xiao X, Clark JM, Park Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol. 2017;105:456–474. doi: 10.1016/j.fct.2017.05.003.
    1. Kim J, Park Y, Yoon KS, Clark JM, Park Y. Imidacloprid, a neonicotinoid insecticide, induces insulin resistance. J Toxicol Sci. 2013;38:655–660. doi: 10.2131/jts.38.655.
    1. Park Y, Kim Y, Kim J, Yoon KS, Clark J, Lee J, et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem ACS Publications. 2013;61:255–259. doi: 10.1021/jf3039814.
    1. Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology [Internet]. 2020;161. Available from: 10.1210/endocr/bqaa024. Cited 28 Apr 2021
    1. Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol Nature Publishing Group. 2011;7:346–353. doi: 10.1038/nrendo.2011.56.
    1. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:E1–150. doi: 10.1210/er.2015-1010.
    1. Andreeva VA, Salanave B, Castetbon K, Deschamps V, Vernay M, Kesse-Guyot E, et al. Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French Census data: the issue of volunteer bias revisited. J Epidemiol Community Health. 2015;69:893–8. doi: 10.1136/jech-2014-205263.
    1. Andreeva VA, Deschamps V, Salanave B, Castetbon K, Verdot C, Kesse-Guyot E, et al. Comparison of Dietary Intakes Between a Large Online Cohort Study (Etude NutriNet-Santé) and a Nationally Representative Cross-Sectional Study (Etude Nationale Nutrition Santé) in France: Addressing the Issue of Generalizability in E-Epidemiology. Am J Epidemiol. 2016;184:660–669. doi: 10.1093/aje/kww016.
    1. Santé Publique France. L’état de santé de la population en France. Rapport 2017 [Internet]. 2017. Available from: .
    1. Srour B, Fezeu LK, Kesse-Guyot E, Allès B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern Med American Medical Association. 2020;180:283–291.
    1. Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, et al. Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor. Environ Health Perspect. 2018;126:067007. doi: 10.1289/EHP2877.

Source: PubMed

3
Subscribe