Prospective association between organic food consumption and the risk of type 2 diabetes: findings from the NutriNet-Santé cohort study

Emmanuelle Kesse-Guyot, Pauline Rebouillat, Laurence Payrastre, Benjamin Allès, Léopold K Fezeu, Nathalie Druesne-Pecollo, Bernard Srour, Wei Bao, Mathilde Touvier, Pilar Galan, Serge Hercberg, Denis Lairon, Julia Baudry, Emmanuelle Kesse-Guyot, Pauline Rebouillat, Laurence Payrastre, Benjamin Allès, Léopold K Fezeu, Nathalie Druesne-Pecollo, Bernard Srour, Wei Bao, Mathilde Touvier, Pilar Galan, Serge Hercberg, Denis Lairon, Julia Baudry

Abstract

Background: Organic food (OF) consumption has substantially increased in high income countries, mostly driven by environmental concerns and health beliefs. Lower exposure to synthetic pesticides has been systematically documented among consumers of organic products compared to non-consumers. While experimental studies suggest that pesticides currently used in food production may be associated with type 2 diabetes (T2D), no well-conducted prospective studies have investigated the potential association between consumption of organic products and the risk of T2D, controlling for potential confounding factors. The objective of this prospective study was to estimate the association between OF consumption and the risk of T2D.

Methods: A total of 33,256 participants (76% women, mean (SD) age: 53 years (14)) of the French NutriNet-Santé prospective cohort study who completed the organic food frequency questionnaire were included (2014-2019). The proportion of OF in the diet (as weight without drinking water) was computed. The associations between the proportion of OF in the diet (as 5% increment and as quintiles) and the risk of T2D were estimated using multivariable Hazard Ratio (HR) and 95% confidence interval (95% CI) derived from proportional hazards models adjusted for confounders (sociodemographic, anthropometric, lifestyle, medical and nutritional factors).

Results: During follow-up (mean = 4.05 y, SD = 1.03 y, 134,990 person-years), 293 incident cases of T2D were identified. After adjustment for confounders including lifestyle (physical activity, smoking status, alcohol consumption) and nutritional quality of the diet assessed by the adherence to the French food-based dietary guidelines, OF consumption was associated with a lower risk of T2D. Participants with the highest quintile of OF consumption, compared with those with the lowest quintile, had 35% lower risk of T2D (95% CI = 0.43-0.97). Each increment of 5% in the proportion of OF in the diet was associated with 3% lower risk of T2D (HR 0.97, 95% CI = 0.95-0.99).

Conclusions: In this large prospective cohort study, OF consumption was inversely associated with the risk of T2D. Further experimental and prospective studies should be conducted to confirm these observations.

Clinical trial registry: The study was registered at ClinicalTrials.gov ( NCT03335644 ).

Keywords: Organic food, Pesticides, Diabetes, Nutrition, Cohort.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Selection of the sample
Fig. 2
Fig. 2
Linearity assumption of the association between the proportion of organic food in the diet and type 2 diabetes risk1,2. 1Spline plot modeling the association between the proportion of organic food in the diet and type 2 diabetes risk using Restricted cubic spline (RCS) SAS Macro® developed by Desquilbet and Mariotti. 2P for overall association = 0.02, P for non-linear association = 0.12

References

    1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
    1. Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care. 2020;43(5):964–974. doi: 10.2337/dc19-1614.
    1. WHO/Europe. Diabetes - Data and statistics [Internet]. 2019 [cited 2019 Sep 20]. Available from: .
    1. Schwingshackl L, Hoffmann G, Lampousi A-M, Knuppel S, Iqbal K, Schwedhelm C, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(5):363–375. doi: 10.1007/s10654-017-0246-y.
    1. Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91(2):549–599. doi: 10.1007/s00204-016-1849-x.
    1. Bulka CM, Daviglus ML, Persky VW, Durazo-Arvizu RA, Avilés-Santa ML, Gallo LC, et al. Occupational exposures and metabolic syndrome among Hispanics/Latinos. J Occup Environ Med. 2017;59(11):1047–1055. doi: 10.1097/JOM.0000000000001115.
    1. Berg ZK, Beatriz R, James D, Katz Alan R, Cooney Robert V, Kamal M. Association Between Occupational Exposure to Pesticides and Cardiovascular Disease Incidence: The Kuakini Honolulu Heart Program. J Am Heart Assoc. 2019;8(19):e012569. doi: 10.1161/JAHA.119.012569.
    1. Collectif INSERM. Pesticides : Effets sur la santé, une expertise collective de l’Inserm [Internet]. Salle de presse | Inserm. 2013 [cited 2016 Aug 21]. Available from: .
    1. Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernández AF, Ntzani EE, et al. Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ Int. 2016;91:60–68. doi: 10.1016/j.envint.2016.02.013.
    1. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120(6):779. doi: 10.1289/ehp.1104597.
    1. Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides. Toxicology. 2014;322:1–13. doi: 10.1016/j.tox.2014.04.009.
    1. Velmurugan G, Ramprasath T, Gilles M, Swaminathan K, Ramasamy S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol Metab. 2017;28(8):612–625. doi: 10.1016/j.tem.2017.05.001.
    1. Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017; 575(1879–1026 (Electronic)):525–535.
    1. Xiao X, Clark JM, Park Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol. 2017;105:456–474. doi: 10.1016/j.fct.2017.05.003.
    1. Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. OJ L 189, 20.7.2007, p. 1–23 (BG, ES, CS, DA, DE, ET, EL, EN, FR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV). Special edition in Croatian: Chapter 15 Volume 008 P. 139 - 161. In force: This act has been changed. Current consolidated version: 01/07/2013. ELI: .
    1. Mie A, Kesse-Guyot E, Rembialkowska E, Grandjean P, Gunnarsson S. Human health implications of organic food and organic agriculture. 2016 Dec.
    1. Authority (EFSA) EFS Monitoring data on pesticide residues in food: results on organic versus conventionally produced food. EFSA Support Publications. 2018;15(4):1397E.
    1. Baudry J, Pointereau P, Seconda L, Vidal R, Taupier-Letage B, Langevin B, et al. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am J Clin Nutr. 2019;109(4):1173–1188. doi: 10.1093/ajcn/nqy361.
    1. Baudry J, Debrauwer L, Durand G, Limon G, Delcambre A, Vidal R, et al. Urinary pesticide concentrations in French adults with low and high organic food consumption: results from the general population-based NutriNet-Santé. J Exp Sci Env Epidemiol. 2018;5:1.
    1. Sun Y, Liu B, Du Y, Snetselaar LG, Sun Q, Hu FB, et al. Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults. Nutrients [Internet]. 2018;10(12). Available from: [cited 2019 Sep 24].
    1. Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E, et al. The Nutrinet-Santé study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public Health. 2010;10:242. doi: 10.1186/1471-2458-10-242.
    1. Baudry J, Méjean C, Allès B, Péneau S, Touvier M, Hercberg S, et al. Contribution of organic food to the diet in a large sample of French adults (the NutriNet-Santé cohort study) Nutrients. 2015;7(10):8615–8632. doi: 10.3390/nu7105417.
    1. Nutrinet-Santé E. Table de composition des aliments de l’étude Nutrinet-Santé (Nutrinet-Santé Study Food Composition Database) Paris: Economica; 2013.
    1. Chaltiel D, Adjibade M, Deschamps V, Touvier M, Hercberg S, Julia C, et al. Programme National Nutrition Santé – guidelines score 2 (PNNS-GS2): development and validation of a diet quality score reflecting the 2017 French dietary guidelines. Br J Nutr. 2019;122(3):331–342. doi: 10.1017/S0007114519001181.
    1. Vergnaud A-C, Touvier M, Méjean C, Kesse-Guyot E, Pollet C, Malon A, et al. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. Int J Public Health. 2011;56(4):407–417. doi: 10.1007/s00038-011-0257-5.
    1. INSEE. Definitions and methods. 2009 [cited 2015 Feb 23]; Available from: .
    1. Hallal PC, Victora CG. Reliability and validity of the International Physical Activity Questionnaire (IPAQ). MedSciSports Exerc. 2004 ;36(0195–9131 (Print)):556.
    1. Lassale C, Péneau S, Touvier M, Julia C, Galan P, Hercberg S, et al. Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. J Med Internet Res. 2013;15(8):e152. doi: 10.2196/jmir.2575.
    1. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med. 2010;29(9):1037–1057.
    1. Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–2782. doi: 10.1017/S1368980013003169.
    1. Kesse-Guyot E, Baudry J, Assmann KE, Galan P, Hercberg S, Lairon D. Prospective association between consumption frequency of organic food and body weight change, risk of overweight or obesity: results from the NutriNet-Santé study. Br J Nutr. 2017;117(2):325–334. doi: 10.1017/S0007114517000058.
    1. Baudry J, Lelong H, Adriouch S, Julia C, Allès B, Hercberg S, et al. Association between organic food consumption and metabolic syndrome: cross-sectional results from the NutriNet-Santé study. Eur J Nutr 2017;.
    1. Eisinger-Watzl M, Wittig F, Heuer T, Hoffmann I. Customers purchasing organic food - do they live healthier? Results of the German National Nutrition Survey II. EurJNutrFood Saf. 2015;5(1):59–71.
    1. Cordts A, Wittig F, Schulze B, Eisinger-Watzl M, Heuer T, Spiller A, et al. A typology comparing male organic consumers and non-organic consumers: nutrition, health and buying behaviors. Ernahrungs Umschau. 2013;60(3):36–42.
    1. Andersen HR, Tinggaard J, Grandjean P, Jensen TK, Dalgård C, Main KM. Prenatal pesticide exposure associated with glycated haemoglobin and markers of metabolic dysfunction in adolescents. Environ Res. 2018;166:71–77. doi: 10.1016/j.envres.2018.05.032.
    1. Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, et al. Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice: sexual dimorphism and role of the constitutive Androstane receptor. Environ Health Perspect. 2018;126(6):067007. doi: 10.1289/EHP2877.
    1. Merhi M, Demur C, Racaud-Sultan C, Bertrand J, Canlet C, Estrada FBY, et al. Gender-linked haematopoietic and metabolic disturbances induced by a pesticide mixture administered at low dose to mice. Toxicology. 2010;267(1):80–90. doi: 10.1016/j.tox.2009.10.024.
    1. Comfort N, Re DB. Sex-specific neurotoxic effects of organophosphate pesticides across the life course. Curr Environ Health Rep. 2017;4(4):392–404. doi: 10.1007/s40572-017-0171-y.
    1. Liang X, Feswick A, Simmons D, Martyniuk CJ. Environmental toxicology and omics: a question of sex. J Proteome. 2018;172:152–164. doi: 10.1016/j.jprot.2017.09.010.
    1. Baudry J, Ducros V, Druesne-Pecollo N, Galan P, Hercberg S, Debrauwer L, et al. Some Differences in Nutritional Biomarkers are Detected Between Consumers and Nonconsumers of Organic Foods: Findings from the BioNutriNet Project. Curr Dev Nutr. 2019 ;3(3):nzy090.
    1. Yang H, Jin X, Kei Lam CW, Yan S-K. Oxidative stress and diabetes mellitus. Clin Chem Lab Med. 2011;49(11):1773–1782. doi: 10.1515/cclm.2011.250.
    1. Tan BL, Norhaizan ME. Carotenoids: How Effective Are They to Prevent Age-Related Diseases? Molecules [Internet]. 2019 9 [cited 2019 Oct 30];24(9). Available from: .
    1. Bradman A, Quirós-Alcalá L, Castorina R, Aguilar Schall R, Camacho J, Holland NT, et al. Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities. Environmental Health Perspectives. 2015;123(10).
    1. Curl CL, Beresford SAA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, et al. Estimating pesticide exposure from dietary intake and organic food choices: the multi-ethnic study of atherosclerosis (MESA) Environ Health Perspect. 2015;123(5):475–483. doi: 10.1289/ehp.1408197.
    1. Curl CL, Porter J, Penwell I, Phinney R, Ospina M, Calafat AM. Effect of a 24-week randomized trial of an organic produce intervention on pyrethroid and organophosphate pesticide exposure among pregnant women. Environ Int. 2019;132:104957. doi: 10.1016/j.envint.2019.104957.
    1. Oates L, Cohen M, Braun L, Schembri A, Taskova R. Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet. Environ Res. 2014;132:105–111. doi: 10.1016/j.envres.2014.03.021.
    1. Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R. Organic diets significantly lower Children’s dietary exposure to Organophosphorus pesticides. Environ Health Perspect. 2006;114(2):260–263. doi: 10.1289/ehp.8418.
    1. Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord. 2019:3.
    1. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol. 2013;268(2):157–177. doi: 10.1016/j.taap.2013.01.025.
    1. Andreeva VA, Salanave B, Castetbon K, Deschamps V, Vernay M, Kesse-Guyot E, et al. Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French census data: the issue of volunteer bias revisited. J Epidemiol Community Health. 2015;69(9):893–898. doi: 10.1136/jech-2014-205263.
    1. Andreeva VA, Deschamps V, Salanave B, Castetbon K, Verdot C, Kesse-Guyot E, et al. Comparison of dietary intakes between a large online cohort study (etude NutriNet-Santé) and a nationally representative cross-sectional study (etude Nationale nutrition Santé) in France: addressing the issue of generalizability in E-epidemiology. Am J Epidemiol. 2016;184(9):660–669. doi: 10.1093/aje/kww016.

Source: PubMed

3
Subscribe