The TOTEM RRMS (Testosterone Treatment on neuroprotection and Myelin Repair in Relapsing Remitting Multiple Sclerosis) trial: study protocol for a randomized, double-blind, placebo-controlled trial

Katline Metzger-Peter, Laurent Daniel Kremer, Gilles Edan, Paulo Loureiro De Sousa, Julien Lamy, Dominique Bagnard, Ayikoe-Guy Mensah-Nyagan, Thibault Tricard, Guillaume Mathey, Marc Debouverie, Eric Berger, Anne Kerbrat, Nicolas Meyer, Jérôme De Seze, Nicolas Collongues, Katline Metzger-Peter, Laurent Daniel Kremer, Gilles Edan, Paulo Loureiro De Sousa, Julien Lamy, Dominique Bagnard, Ayikoe-Guy Mensah-Nyagan, Thibault Tricard, Guillaume Mathey, Marc Debouverie, Eric Berger, Anne Kerbrat, Nicolas Meyer, Jérôme De Seze, Nicolas Collongues

Abstract

Background: Central nervous system damage in multiple sclerosis (MS) is responsible for serious deficiencies. Current therapies are focused on the treatment of inflammation; however, there is an urgent need for innovative therapies promoting neuroregeneration, particularly myelin repair. It is demonstrated that testosterone can act through neural androgen receptors and several clinical observations stimulated an interest in the potential protective effects of testosterone treatment for MS. Here, we sought to demonstrate the effects of a testosterone supplementation in testosterone-deficient men with relapsing-remitting MS.

Methods/design: This report presents the rationale and methodology of TOTEM RRMS, a French, phase 2, multicenter, randomized, placebo-controlled, and double-blind trial, which aims to prevent the progression of MS in men with low testosterone levels by administration of testosterone undecanoate, who were kept under natalizumab (Tysabri®) to overcome the anti-inflammatory effect of testosterone. Forty patients will be randomized into two groups receiving either a testosterone treatment (Nebido®) or a matching placebo. The intervention period for each group will last 66 weeks (treatment will be injected at baseline, week 6, and then every 12 weeks). The main objective is to determine the neuroprotective and remyelinating effects of testosterone using tensor diffusion imaging techniques and thalamic atrophy analyses. As secondary objectives, impacts of the testosterone supplementation will be studied using other conventional and unconventional MRI parameters and with clinical outcomes.

Discussion: The action of testosterone is observed in different experimental autoimmune encephalomyelitis models and epidemiological studies in humans. However, despite several preclinical data and some small clinical trials in MS, clear evidence for a therapeutic effect of hormone therapy is still missing. Therefore, our goal is to demonstrate the effects of testosterone therapies in MS. As there is no effective treatment currently available on fatigue in MS, careful attention should also be paid to secondary endpoints: fatigue, cognitive functions, and other symptoms that may improve life quality. Assuming a positive outcome of the trial, this treatment could be considered as a new neuroprotective and remyelinating therapy in relapsing-remitting MS and could be applicable to other demyelinating diseases.

Trial registration: ClinicalTrials.gov NCT03910738. Registered on 10 April 2019.

Keywords: Multiple sclerosis; Neuroprotection; Randomized controlled trial; Remyelination; Testosterone.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of the trial process

References

    1. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell. 1996;85(3):299–302. doi: 10.1016/S0092-8674(00)81107-1.
    1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Kieseier BC, Stüve O. A critical appraisal of treatment decisions in multiple sclerosis--old versus new. Nat Rev Neurol. 2011;7(5):255–262. doi: 10.1038/nrneurol.2011.41.
    1. Martino G, Franklin RJM, Van Evercooren AB, Kerr DA, Stem Cells in Multiple Sclerosis (STEMS) Consensus Group Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol. 2010;6(5):247–255. doi: 10.1038/nrneurol.2010.35.
    1. Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev. 2016;15(9):900–910. doi: 10.1016/j.autrev.2016.07.002.
    1. Jiménez-Balderas FJ, Tápia-Serrano R, Fonseca ME, Arellano J, Beltrán A, Yáñez P, Camargo-Coronel A, Fraga A. High frequency of association of rheumatic/autoimmune diseases and untreated male hypogonadism with severe testicular dysfunction. Arthritis Res. 2001;3(6):362–367. doi: 10.1186/ar328.
    1. Noonan CW, Kathman SJ, White MC. Prevalence estimates for MS in the United States and evidence of an increasing trend for women. Neurology. 2002;58(1):136–138. doi: 10.1212/wnl.58.1.136.
    1. Orton S-M, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–936. doi: 10.1016/S1474-4422(06)70581-6.
    1. Schwendimann RN, Alekseeva N. Gender issues in multiple sclerosis. Int Rev Neurobiol. 2007;79:377–392. doi: 10.1016/S0074-7742(07)79017-7.
    1. Hawkins SA, McDonnell GV. Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. J Neurol Neurosurg Psychiatry. 1999;67(2):148–152. doi: 10.1136/jnnp.67.2.148.
    1. Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain J Neurol. 2003;126(Pt 4):770–782. doi: 10.1093/brain/awg081.
    1. Parmenter BA, Denney DR, Lynch SG, Middleton LS, Harlan LM. Cognitive impairment in patients with multiple sclerosis: association with the APOE gene and promoter polymorphisms. Mult Scler. 2007;13(1):25–32. doi: 10.1177/1352458506070682.
    1. Savettieri G, Messina D, Andreoli V, Bonavita S, Caltagirone C, Cittadella R, Farina D, et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J Neurol. 2004;251(10):1208–1214. doi: 10.1007/s00415-004-0508-y.
    1. Vukusic S, Hutchinson M, Hours M, Moreau T, Cortinovis-Tourniaire P, Adeleine P, Confavreux C, Pregnancy In Multiple Sclerosis Group Pregnancy and multiple sclerosis (the PRIMS Study): clinical predictors of post-partum relapse. Brain J Neurol. 2004;127(Pt 6):1353–1360. doi: 10.1093/brain/awh152.
    1. Bove R, Musallam A, Healy BC, Raghavan K, Glanz BI, Bakshi R, Weiner H, De Jager PL, Miller KK, Chitnis T. Low testosterone is associated with disability in men with multiple sclerosis. Mult Scler. 2014;20(12):1584–1592. doi: 10.1177/1352458514527864.
    1. Moore S, Patel R, Hannsun G, Yang J, Tiwari-Woodruff SK. Sex chromosome complement influences functional callosal myelination. Neuroscience. 2013;245:166–178. doi: 10.1016/j.neuroscience.2013.04.017.
    1. Spence RD, Voskuhl RR. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol. 2012;33(1):105–115. doi: 10.1016/j.yfrne.2011.12.001.
    1. Collongues N, Patte-Mensah C, De Seze J, Mensah-Nyagan A-G, Derfuss T. Testosterone and estrogen in multiple sclerosis: from pathophysiology to therapeutics. Expert Rev Neurother. 2018;18(6):515–522. doi: 10.1080/14737175.2018.1481390.
    1. Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain J Neurol. 2002;125(Pt 8):1676–1695. doi: 10.1093/brain/awf177.
    1. Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006;5(2):158–170. doi: 10.1016/S1474-4422(06)70349-0.
    1. Yassin AA, Saad F. Treatment of sexual dysfunction of hypogonadal patients with long-acting testosterone undecanoate (Nebido) World J Urol. 2006;24(6):639–644. doi: 10.1007/s00345-006-0120-0.
    1. Conaglen HM, Paul RG, Yarndley T, Kamp J, Elston MS, Conaglen JV. Retrospective investigation of testosterone undecanoate depot for the long-term treatment of male hypogonadism in clinical practice. J Sex Med. 2014;11(2):574–582. doi: 10.1111/jsm.12401.
    1. Fennell C, Sartorius G, Ly LP, Turner L, Liu PY, Conway AJ, Handelsman DJ. Randomized cross-over clinical trial of injectable vs. implantable depot testosterone for maintenance of testosterone replacement therapy in androgen deficient men. Clin Endocrinol. 2010;73(1):102–109. doi: 10.1111/j.1365-2265.2009.03744.x.
    1. Francomano D, Lenzi A, Aversa A. Effects of five-year treatment with testosterone undecanoate on metabolic and hormonal parameters in ageing men with metabolic syndrome. Int J Endocrinol. 2014;2014:527470. doi: 10.1155/2014/527470.
    1. Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJG, Giltay EJ, Saad F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol. 2010;73(5):602–612. doi: 10.1111/j.1365-2265.2010.03845.x.
    1. Permpongkosol S, Tantirangsee N, Ratana-olarn K. Treatment of 161 men with symptomatic late onset hypogonadism with long-acting parenteral testosterone undecanoate: effects on body composition, lipids, and psychosexual complaints. J Sex Med. 2010;7(11):3765–3774. doi: 10.1111/j.1743-6109.2010.01994.x.
    1. Ciampi E, Pareto D, Sastre-Garriga J, Vidal-Jordana A, Tur C, Río J, Tintoré M, Auger C, Rovira A, Montalban X. Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Mult Scler. 2017;23(4):556–566. doi: 10.1177/1352458516656808.
    1. Zivadinov R, Hojnacki D, Bergsland N, Kennedy C, Hagemeier J, Melia R, Ramasamy DP, et al. Effect of natalizumab on brain atrophy and disability progression in multiple sclerosis patients over 5 years. Eur J Neurol. 2016;23(6):1101–1109. doi: 10.1111/ene.12992.
    1. Talmage GD, Coppes OJM, Javed A, Bernard J. Natalizumab stabilizes physical, cognitive, MRI, and OCT markers of disease activity: a prospective, non-randomized pilot study. PLoS One. 2017;12(4):e0173299. doi: 10.1371/journal.pone.0173299.
    1. Sastre-Garriga J, Tur C, Pareto D, Vidal-Jordana A, Auger C, Río J, Huerga E, Tintoré M, Rovira A, Montalban X. Brain atrophy in natalizumab-treated patients: a 3-year follow-up. Mult Scler. 2015;21(6):749–756. doi: 10.1177/1352458514556300.
    1. Iaffaldano P, Viterbo RG, Trojano M. Natalizumab discontinuation is associated with a rebound of cognitive impairment in multiple sclerosis patients. J Neurol. 2016;263(8):1620–1625. doi: 10.1007/s00415-016-8177-1.
    1. Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH, Armstrong RC. Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage. 2005;26(1):132–140. doi: 10.1016/j.neuroimage.2005.01.028.
    1. Klawiter EC, Schmidt RE, Trinkaus K, Liang H-F, Budde MD, Naismith RT, Song S-K, Cross AH, Benzinger TL. Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords. NeuroImage. 2011;55(4):1454–1460. doi: 10.1016/j.neuroimage.2011.01.007.
    1. Budde MD, Xie M, Cross AH, Song S-K. Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci. 2009;29(9):2805–2813. doi: 10.1523/JNEUROSCI.4605-08.2009.
    1. Ontaneda D, Sakaie K, Lin J, Wang X-F, Lowe MJ, Phillips MD, Fox RJ. Measuring brain tissue integrity during 4 years using diffusion tensor imaging. AJNR Am J Neuroradiol. 2017;38(1):31–38. doi: 10.3174/ajnr.A4946.
    1. Ontaneda D, Fox RJ. Imaging as an outcome measure in multiple sclerosis. Neurotherapeutics. 2017;14(1):24–34. doi: 10.1007/s13311-016-0479-6.
    1. Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, Ontaneda D, Mahmoud SY, Lowe MJ, Phillips MD. Measuring myelin repair and axonal loss with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32(1):85–91. doi: 10.3174/ajnr.A2238.
    1. Fox RJ, Sakaie K, Lee J-C, Debbins JP, Liu Y, Arnold DL, Melhem ER, et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am J Neuroradiol. 2012;33(4):695–700. doi: 10.3174/ajnr.A2844.
    1. Ontaneda D, Sakaie K, Lin J, Wang X, Lowe MJ, Phillips MD, Fox RJ. Identifying the start of multiple sclerosis injury: a serial DTI study. J Neuroimaging. 2014;24(6):569–576. doi: 10.1111/jon.12082.
    1. Chen JT-H, Easley K, Schneider C, Nakamura K, Kidd GJ, Chang A, Staugaitis SM, et al. Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology. 2013;80(3):246–252. doi: 10.1212/WNL.0b013e31827deb99.
    1. Fjær S, Bø L, Lundervold A, Myhr K-M, Pavlin T, Torkildsen O, Wergeland S. Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model. PLoS One. 2013;8(12):e84162. doi: 10.1371/journal.pone.0084162.
    1. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56(3):407–415. doi: 10.1002/ana.20202.
    1. Filippi M, Rocca MA. MR imaging of multiple sclerosis. Radiology. 2011;259(3):659–681. doi: 10.1148/radiol.11101362.

Source: PubMed

3
Subscribe