Nitrosative Stress and Its Association with Cardiometabolic Disorders

Israel Pérez-Torres, Linaloe Manzano-Pech, María Esther Rubio-Ruíz, María Elena Soto, Verónica Guarner-Lans, Israel Pérez-Torres, Linaloe Manzano-Pech, María Esther Rubio-Ruíz, María Elena Soto, Verónica Guarner-Lans

Abstract

: Reactive nitrogen species (RNS) are formed when there is an abnormal increase in the level of nitric oxide (NO) produced by the inducible nitric oxide synthase (iNOS) and/or by the uncoupled endothelial nitric oxide synthase (eNOS). The presence of high concentrations of superoxide anions (O2-) is also necessary for their formation. RNS react three times faster than O2- with other molecules and have a longer mean half life. They cause irreversible damage to cell membranes, proteins, mitochondria, the endoplasmic reticulum, nucleic acids and enzymes, altering their activity and leading to necrosis and to cell death. Although nitrogen species are important in the redox imbalance, this review focuses on the alterations caused by the RNS in the cellular redox system that are associated with cardiometabolic diseases. Currently, nitrosative stress (NSS) is implied in the pathogenesis of many diseases. The mechanisms that produce damage remain poorly understood. In this paper, we summarize the current knowledge on the participation of NSS in the pathology of cardiometabolic diseases and their possible mechanisms of action. This information might be useful for the future proposal of anti-NSS therapies for cardiometabolic diseases.

Keywords: nitric oxide; nitrosative stress; peroxynitrite; uncoupled NOS isoforms.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Interrelationship between the synthesis of nitric oxide and the generation of RNS. The RNS are formed in the presence of high O2 concentrations—and when there is an abnormal increase in the level of NO produced by the iNOS and/or by the uncoupled eNOS and nNOS. Abbreviations: FAD = flavin adenine dinucleotide, FMN = flavin mononucleotide, NAD(P)H = nicotinamide adenine dinucleotide, O2 = molecular oxygen, RNS = reactive nitrogen species, NO = nitric oxide, ONOO− = peroxynitrate, •NO2 = nitrogen dioxide, HNO3 = peroxynitrous acid, N2O3 = dinitrogen trioxide, HNO = nitroxyl, ONOOH = peroxynitrous acid, O2NOO− = peroxynitrate, O2NOOH = peroxynitric acid, NO+ = nitrosonium cation, NO3− = nitrate, NO2− = nitrite, NO− = nitroxyl anion, RNS = reactive nitrogen species, ETC = electron transport chain, BH4 = tetrahydrobiopterin, BH2 = dihydrobiopterin and L-arg = l-arginine. nNOS, eNOS and iNOS = neuronal, endothelial and inducible nitric oxide synthase.
Figure 2
Figure 2
Interaction between nitrosative stress (NSS) and the mitochondrial proteins. The nitration of Tyr residues in the catalytic β subunit of the complex V decrease adenosine triphosphate (ATP) levels. The ONOO− impairs complex I by S-nitrosylation affecting the iron-sulphur centers.
Figure 3
Figure 3
Nitrosative stress and the antioxidant system. A deficient of the antioxidant defense mechanisms favor the processes of nitration and nitrosylation of different enzymes. Reaction (A): Nitration and S-nitrosylation influence the activity of the CAT that affects its binding to H2O2. Reaction (B): The S-nitrosylation of the catalytic site in the SOD may lead to the loss of its activity, and, also, a high NO concentration enhances O2− production by inhibition of the cytochrome oxidase. Reaction (C): The lack of GPX 1 enhances ONOO− survival. (D): There is an inhibition of GR activity and a reduced concentration of GSH after the S-nitrosylation; the reaction with GSH generates S-GSNO. Abbreviations: SOD = superoxide dismutase, CAT = catalase, GPx = glutathione peroxidase, PRDX = peroxiredoxin, GR = glutathione reductase, GSH = glutathione, GSSG = oxidized glutathione, S-GSNO = S-nitroso glutathione, Fe-NO = ferric-nitrosyl, NO = nitric oxide, ONOO− = peroxynitrite, OH− = hydroxyl radical, LH = polyunsaturated fatty acid, L = carbon-center lipid radical and [] = concentration.
Figure 4
Figure 4
Relation of NSS with some metabolic disorders. Abbreviations: NSS = nitrosative stress.

References

    1. Pérez-Torres I., Guarner-Lans V., Rubio-Ruiz M.E. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents. Int. J. Mol. Sci. 2017;18:2098. doi: 10.3390/ijms18102098.
    1. Alp N.J., Channon K.M. Regulation of Endothelial Nitric Oxide Synthase by Tetrahydrobiopterin in Vascular Disease. Arter. Thromb. Vasc. Biol. 2004;24:413–420. doi: 10.1161/01.ATV.0000110785.96039.f6.
    1. Lancaster J.R. Nitroxidative, Nitrosative, and Nitrative Stress: Kinetic Predictions of Reactive Nitrogen Species Chemistry Under Biological Conditions. Chem. Res. Toxicol. 2006;19:1160–1174. doi: 10.1021/tx060061w.
    1. Touyz R.M. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension. Hypertension. 2004;44:248–252. doi: 10.1161/01.HYP.0000138070.47616.9d.
    1. Griendling K.K., FitzGerald G.A. Oxidative stress and cardiovascular injury. Part I: Basic Mechanisms and In Vivo Monitoring of ROS. Circulation. 2003;108:1912–1916. doi: 10.1161/.
    1. Kurutaş E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5.
    1. Yamamoto R., Bredt D.S., Snyder S.H., Stone R.A. The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience. 1993;54:189–200. doi: 10.1016/0306-4522(93)90393-T.
    1. Ferdinandy P., Danial H., Ambrus I., Rothery R., Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 2000;87:241–247. doi: 10.1161/01.RES.87.3.241.
    1. Tegeder I. Nitric oxide mediated redox regulation of protein homeostasis. Cell. Signal. 2019;53:348–356. doi: 10.1016/j.cellsig.2018.10.019.
    1. Moncada S., Palmer R.M.J. Endothelium-Dependent Relaxation and the Discovery of the l-Arginine: NO Pathway. In: Ryan U.S., Rubanyi G.M., editors. Endothelial Regulation of Vascular Tone. Marcel Dekker, Inc.; New York, NY, USA: 1992. pp. 21–36.
    1. Arral M.L., Halpern J. Electrochemical Detection of NG-Hydroxy-l-arginine. ECS Trans. 2018;85:1163–1169. doi: 10.1149/08513.1163ecst.
    1. Chakravarti B.C.A.D.N. Protein Tyrosine Nitration: Role in Aging. Curr. Aging Sci. 2017;10:1. doi: 10.2174/1874609810666170315112634.
    1. Greenacre S.A., Ischiropoulos H. Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction. Free. Radic. Res. 2001;34:541–581. doi: 10.1080/10715760100300471.
    1. Zielonka J., Sikora A., Joseph J., Kalyanaraman B. Peroxynitrite Is the Major Species Formed from Different Flux Ratios of Co-generated Nitric Oxide and Superoxide. J. Biol. Chem. 2010;285:14210–14216. doi: 10.1074/jbc.M110.110080.
    1. Zhang Y., Tocchetti C.G., Krieg T., Moens A.L. Oxidative and nitrosative stress in the maintenance of myocardial function. Free. Radic. Biol. Med. 2012;53:1531–1540. doi: 10.1016/j.freeradbiomed.2012.07.010.
    1. Liu F., Li L., Zhang B., Fan W., Zhang R., Liu G., Liu X. A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analytical. 2019;144:6905–6913. doi: 10.1039/C9AN01693G.
    1. Hodges G.R., Marwaha J., Paul T., Ingold K.U. A novel procedure for generating both nitric oxide and superoxide in situ from chemical sources at any chosen mole ratio. First application: Tyrosine oxidation and a comparison with preformed peroxynitrite. Chem. Res. Toxicol. 2000;13:1287–1293. doi: 10.1021/tx0001272.
    1. Minko I.G., Kozekov I.D., Harris T.M., Rizzo C.J., Lloyd R.S., Stone M.P. Chemistry and Biology of DNA Containing 1,N2-Deoxyguanosine Adducts of the α,β-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and 4-Hydroxynonenal. Chem. Res. Toxicol. 2009;22:759–778. doi: 10.1021/tx9000489.
    1. Yamakura F., Taka H., Fujimura T., Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J. Biol. Chem. 1998;273:14085–14089. doi: 10.1074/jbc.273.23.14085.
    1. Mitchell D., Erwin P.A., Michel T., Marletta M.A. S-Nitrosation and Regulation of Inducible Nitric Oxide Synthase. Biochemistry. 2005;44:4636–4647. doi: 10.1021/bi0474463.
    1. Münzel T., Daiber A., Ullrich V., Mülsch A. Vascular Consequences of Endothelial Nitric Oxide Synthase Uncoupling for the Activity and Expression of the Soluble Guanylyl Cyclase and the cGMP-Dependent Protein Kinase. Arter. Thromb. Vasc. Biol. 2005;25:1551–1557. doi: 10.1161/.
    1. Paolocci N., Ekelund U.E.G., Isoda T., Ozaki M., Vandegaer K., Georgakopoulos D., Harrison R.W., Kass D.A., Hare J.M. cGMP-independent inotropic effects of nitric oxide and peroxynitrite donors: Potential role for nitrosylation. Am. J. Physiol. Circ. Physiol. 2000;279:H1982–H1988. doi: 10.1152/ajpheart.2000.279.4.H1982.
    1. Gaut J.P., Byun J., Tran H.D., Lauber W.M., Carroll J.A., Hotchkiss R.S., Belaaouaj A., Heinecke J.W. Myeloperoxidase produces nitrating oxidants in vivo. J. Clin. Investig. 2002;109:1311–1319. doi: 10.1172/JCI0215021.
    1. Broniowska K., Hogg N. The Chemical Biology of S-Nitrosothiols. Antioxid. Redox Signal. 2012;17:969–980. doi: 10.1089/ars.2012.4590.
    1. Heidrich F.M., Jercke M.C., Ritzkat A., Ebner A., Poitz D.M., Pfluecke C., Quick S., Speiser U., Simonis G., Wäßnig N.K., et al. The endothelial nitric oxide synthase cofactor tetrahydrobiopterin shields the remote myocardium from apoptosis after experimental myocardial infarction in vivo. Kardiol. Pol. 2017;75:1339–1350. doi: 10.5603/KP.a2017.0164.
    1. Kuzkaya N., Weissmann N., Harrison D.G., Dikalov S. Interactions of Peroxynitrite, Tetrahydrobiopterin, Ascorbic Acid, and Thiols: Implications for Uncoupling Endothelial Nitric-Oxide Synthase. J. Biol. Chem. 2003;278:22546–22554. doi: 10.1074/jbc.M302227200.
    1. Vasquez-Vivar J., Martasek P., Whitsett J., Joseph J., Kalyanaraman B. The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: An EPR spin trapping study. Biochem. J. 2002;362:733–739. doi: 10.1042/bj3620733.
    1. Durante W., Johnson F.K., Johnson R.A. Arginase: A Critical Regulator of Nitric Oxide Synthesis and Vascular Function. Clin. Exp. Pharmacol. Physiol. 2007;34:906–911. doi: 10.1111/j.1440-1681.2007.04638.x.
    1. Bevers L.M., Braam B., Post J.A., Van Zonneveld A.J., Rabelink T.J., Koomans H.A., Verhaar M.C., Joles J. Tetrahydrobiopterin, but Not l-Arginine, Decreases NO Synthase Uncoupling in Cells Expressing High Levels of Endothelial NO Synthase. Hypertension. 2006;47:87–94. doi: 10.1161/01.HYP.0000196735.85398.0e.
    1. Crijns H.J., Schotten U., Moens A.L. Is NOS uncoupling the missing link between atrial fibrillation and chronic non-ischaemic cardiomyopathy? Cardiovasc. Res. 2011;91:556–558. doi: 10.1093/cvr/cvr176.
    1. Lim G., Venetucci L., Eisner D., Casadei B. Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc. Res. 2007;77:256–264. doi: 10.1093/cvr/cvm012.
    1. Tocchetti C.G., Stanley B.A., Murray C.I., Sivakumaran V., Donzelli S., Mancardi D., Pagliaro P., Gao W.D., Van Eyk J., Kass D.A., et al. Playing with cardiac ‘‘redox switches’’: The ‘‘HNO way’’ to modulate cardiac function. Antioxid. Redox. Signal. 2011;14:1687–1698. doi: 10.1089/ars.2010.3859.
    1. Kohr M.J., Kaludercic N., Tocchetti C.G., Dong W., Kass D.A., Janssen P.M., Paolocci N., Ziolo M.T. Nitroxyl enhances myocyte Ca2þ transients by exclusively targeting SR Ca2þ-cycling. Front. Biosci. 2010;2:614–626.
    1. Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2011;33:829–837. doi: 10.1093/eurheartj/ehr304.
    1. Gliozzi M., Scicchitano M., Bosco F., Musolino V., Carresi C., Scarano F., Maiuolo J., Nucera S., Maretta A., Paone S., et al. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int. J. Mol. Sci. 2019;20:3294. doi: 10.3390/ijms20133294.
    1. Pérez-Torres I., Guarner V., El Hafidi M., Baños G. Sex hormones, metabolic syndrome and kidney. Curr. Top. Med. Chem. 2011;11:1694–1705. doi: 10.2174/156802611796117577.
    1. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun. 2003;305:776–783. doi: 10.1016/S0006-291X(03)00814-3.
    1. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA. 2004;101:4003–4008. doi: 10.1073/pnas.0307446101.
    1. Wolin M.S. Interactions of oxidants with vascular signaling systems. Arter. Thromb. Vasc. Biol. 2000;20:1430–1442. doi: 10.1161/01.ATV.20.6.1430.
    1. Miseta A., Csutora P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 2000;17:1232–1239. doi: 10.1093/oxfordjournals.molbev.a026406.
    1. Landar A., Oh J.-Y., Giles N.M., Isom A., Kirk M., Barnes S., Darley-Usmar V. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radic. Biol. Med. 2006;40:459–468. doi: 10.1016/j.freeradbiomed.2005.08.046.
    1. Trachootham D., Lu W., Ogasawara M.A., Valle N.R.-D., Huang P. Redox Regulation of Cell Survival. Antioxid. Redox Signal. 2008;10:1343–1374. doi: 10.1089/ars.2007.1957.
    1. Benhar M., Forrester M.T., Stamler J.S. Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nat. Rev. Mol. Cell. Biol. 2009;10:721–732. doi: 10.1038/nrm2764.
    1. Nakato R., Ohkubo Y., Konishi A., Shibata M., Kaneko Y., Iwawaki T., Nakamura T., Lipton S.A., Uehara T. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep. 2015;5:14812. doi: 10.1038/srep14812.
    1. Beigi F., Gonzalez D.R., Minhas K.M., Sun Q.-A., Foster M.W., Khan S.A., Treuer A.V., Dulce R.A., Harrison R.W., Saraiva R.M., et al. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. USA. 2012;109:4314–4319. doi: 10.1073/pnas.1113319109.
    1. Diers A.R., Broniowska K., Hogg N. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells. Redox Biol. 2013;1:1–7. doi: 10.1016/j.redox.2012.11.003.
    1. Bedard K., Krause K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005.
    1. Park J.-W., Yang E.S., Park J.-W. Inactivation of NADP+-dependent Isocitrate Dehydrogenase by Peroxynitrite. J. Biol. Chem. 2003;278:51360–51371. doi: 10.1074/jbc.m302332200.
    1. Mailloux R.J. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. Oxid. Med. Cell. Longev. 2018;2018:1–10. doi: 10.1155/2018/7857251.
    1. Moon K.-H., Hood B.L., Kim B.-J., Hardwick J.P., Conrads T.P., Veenstra T.D., Song B.J. Inactivation of oxidized andS-nitrosylated mitochondrial proteins in alcoholic fatty liver of rats. Hepatology. 2006;44:1218–1230. doi: 10.1002/hep.21372.
    1. Wallace K. Mitochondrial off targets of drug therapy. Trends Pharmacol. Sci. 2008;29:361–366. doi: 10.1016/j.tips.2008.04.001.
    1. Lu H., Koshkin V., Allister E.M., Gyulkhandanyan A.V., Wheeler M.B. Molecular and Metabolic Evidence for Mitochondrial Defects Associated With β-Cell Dysfunction in a Mouse Model of Type 2 Diabetes. Diabetes. 2009;59:448–459. doi: 10.2337/db09-0129.
    1. Pacher P., Beckman J.S., Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006.
    1. Riobó N., Clementi E., Melani M., Boveris A., Cadenas E., Moncada S., Poderoso J.J. Nitric oxide inhibits mitochondrial NADH: Ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 2001;359:139–145. doi: 10.1042/bj3590139.
    1. Apostolova N., Garcia-Bou R., Hernandez-Mijares A., Herance R., Rocha M., Victor V.M., Herance J.R. Mitochondrial Antioxidants Alleviate Oxidative and Nitrosative Stress in a Cellular Model of Sepsis. Pharm. Res. 2011;28:2910–2919. doi: 10.1007/s11095-011-0528-0.
    1. Tripathi P., Moinuddin, Dixit K., Mir A.R., Habib S., Alam K., Ali A. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients. Cell. Immunol. 2014;290:30–38. doi: 10.1016/j.cellimm.2014.04.012.
    1. Lange M., Connelly R., Traber D.L., Hamahata A., Nakano Y., Esechie A., Jonkam C., Von Borzyskowski S., Traber L.D., Schmalstieg F.C., et al. Time course of nitric oxide synthases, nitrosative stress, and poly(ADP ribosylation) in an ovine sepsis model. Crit. Care. 2010;14:R129. doi: 10.1186/cc9097.
    1. Jagtap P., Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 2005;4:421–440. doi: 10.1038/nrd1718.
    1. Mathews M.T., Berk B.C. PARP-1 Inhibition Prevents Oxidative and Nitrosative Stress–Induced Endothelial Cell Death via Transactivation of the VEGF Receptor 2. Arter. Thromb. Vasc. Biol. 2008;28:711–717. doi: 10.1161/ATVBAHA.107.156406.
    1. Radovits T., Lin L.-N., Zotkina J., Gero D., Szabo C., Karck M., Szabo G. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur. J. Pharmacol. 2007;564:158–166. doi: 10.1016/j.ejphar.2007.02.060.
    1. Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br. J. Pharmacol. 2009;156:713–727. doi: 10.1111/j.1476-5381.2008.00086.x.
    1. Purwar N., McGarry J.M., Kostera J., Pacheco A.A., Schmidt M. Interaction of Nitric Oxide with Catalase: Structural and Kinetic Analysis. Biochemistry. 2011;50:4491–4503. doi: 10.1021/bi200130r.
    1. Chakravarti R., Gupta K., Majors A., Ruple L., Aronica M., Stuehr D.J. Novel insights in mammalian catalase heme maturation: Effect of NO and thioredoxin-1. Free Radic. Biol. Med. 2015;82:105–113. doi: 10.1016/j.freeradbiomed.2015.01.030.
    1. Díaz-Vilchis A., Loewen P.C., Fita I., Carpena X. Thirty years of heme catalases structural biology. Arch. Biochem. Biophys. 2012;525:102–110. doi: 10.1016/j.abb.2011.12.011.
    1. Davis K.L., Martin E., Turko I.V., Murad F. Novel effects of nitric oxide. Annu. Rev. Pharmacol. Toxicol. 2001;41:203–236. doi: 10.1146/annurev.pharmtox.41.1.203.
    1. Brunelli L., Yermilov V., Beckman J.S. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic. Biol. Med. 2001;30:709–714. doi: 10.1016/S0891-5849(00)00512-8.
    1. Pérez-Torres I., Torres-Narváez J.C., Guarner-Lans V., Díaz-Díaz E., Perezpeña-Diazconti M., Palacios A.R., Manzano-Pech L. Myocardial Protection from Ischemia-Reperfusion Damage by the Antioxidant Effect of Hibiscus sabdariffa Linnaeus on Metabolic Syndrome Rats. Oxid. Med. Cell. Longev. 2019;2019:1724194. doi: 10.1155/2019/1724194.
    1. Soto M.E., Zuñiga-Muñoz A., Guarner-Lans V., Duran-Hernández E.J., Pérez-Torres I. Infusion ofHibiscus sabdariffa L.Modulates Oxidative Stress in Patients with Marfan Syndrome. Mediat. Inflamm. 2016;2016:1–12. doi: 10.1155/2016/8625203.
    1. Morris G., Berk M., Klein H., Walder K., Galecki P., Maes M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol. Neurobiol. 2016;54:4271–4291. doi: 10.1007/s12035-016-9975-2.
    1. Quijano C., Hernandez-Saavedra D., Castro L., McCord J.M., Freeman B.A., Radi R. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 2001;276:11631–11638. doi: 10.1074/jbc.M009429200.
    1. Schiffrin E.L. Oxidative stress, nitric oxide synthase, and superoxide dismutase: A matter of imbalance underlies endothelial dysfunction in the human coronary circulation. Hypertension. 2007;51:31–32. doi: 10.1161/HYPERTENSIONAHA.107.103226.
    1. Yamakura F., Kawasaki H. Post-translational modifications of superoxide dismutase. Biochim. Biophys. Acta BBA Proteins Proteom. 2010;1804:318–325. doi: 10.1016/j.bbapap.2009.10.010.
    1. Franco M.C., Estevez A.G. Tyrosine nitration as mediator of cell death. Cell. Mol. Life Sci. 2014;71:3939–3950. doi: 10.1007/s00018-014-1662-8.
    1. Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radic. Res. 2016;50:291–303. doi: 10.3109/10715762.2015.1118473.
    1. Romero-Puertas M.C., Laxa M., Mattè A., Zaninotto F., Finkemeier I., Jones A.M., Perazzolli M., Vandelle E.G.G., Dietz K.-J., Delledonne M. S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration. Plant Cell. 2007;19:4120–4130. doi: 10.1105/tpc.107.055061.
    1. Pech L.G.M., Caballero-Chacón S.D.C., Guarner-Lans V., Díaz-Díaz E., Gómez A.M., Pérez-Torres I. Effect of oophorosalpingo-hysterectomy on serum antioxidant enzymes in female dogs. Sci. Rep. 2019;9:9674. doi: 10.1038/s41598-019-46204-w.
    1. Presnell C.E., Bhatti G., Numan L.S., Lerche M., Alkhateeb S.K., Ghalib M., Shammaa M., Kavdia M. Computational insights into the role of glutathione in oxidative stress. Curr. Neurovasc. Res. 2013;10:185–194. doi: 10.2174/1567202611310020011.
    1. Yamada T., Fedotovskaya O., Cheng A.J., Cornachione A.S., Minozzo F.C., Aulin C., Fridén C., Turesson C., Andersson D., Glenmark B., et al. Nitrosative modifications of the Ca2+release complex and actin underlie arthritis-induced muscle weakness. Ann. Rheum. Dis. 2014;74:1907–1914. doi: 10.1136/annrheumdis-2013-205007.
    1. Laroux F.S., Lefer D.J., Kawachi S., Scalia R., Cockrell A.S., Gray L., Van Der Heyde H., Hoffman J.M., Grisham M.B. Role of Nitric Oxide in the Regulation of Acute and Chronic Inflammation. Antioxid. Redox Signal. 2000;2:391–396. doi: 10.1089/15230860050192161.
    1. Van Der Goes A., Wouters D., Pol S.M.A., Huizinga R., Ronken E., Adamson P., Greenwood J., Dijkstra C.D., Vries H.E. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J. 2001;15:1852–1854. doi: 10.1096/fj.00-0881fje.
    1. Ceriello A., Quagliaro L., Catone B., Pascon R.C., Piazzola M., Bais B., Marra G., Tonutti L., Taboga C., Motz E. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care. 2002;25:1439–1443. doi: 10.2337/diacare.25.8.1439.
    1. Kim S., Lee K.-S., Choi S., Kim J., Lee D.-K., Park M., Park W., Kim T.-H., Hwang J.Y., Won M.H., et al. NF-κB–responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase. J. Biol. Chem. 2018;293:18989–19000. doi: 10.1074/jbc.RA118.005197.
    1. Wang Y., Veremeyko T., Wong A.H.K., El Fatimy R., Wei Z., Cai W., Krichevsky A.M. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer’s disease. Neurobiol. Aging. 2017;51:156–166. doi: 10.1016/j.neurobiolaging.2016.12.015.
    1. Wilcox C.S., Gutterman D. Focus on oxidative stress in the cardiovascular and renal systems. Am. J. Physiol. Circ. Physiol. 2005;288:H3–H6. doi: 10.1152/ajpheart.00854.2004.
    1. Nagareddy P.R., Xia Z., McNeill J.H., MacLeod K.M. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am. J. Physiol. Circ. Physiol. 2005;289:H2144–H2152. doi: 10.1152/ajpheart.00591.2005.
    1. Piconi L., Quagliaro L., Da Ros R., Assaloni R., Giugliano D., Esposito K., Szabó C., Ceriello A. Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: The role of poly(ADP-ribose) polymerase. J. Thromb. Haemost. 2004;2:1453–1459. doi: 10.1111/j.1538-7836.2004.00835.x.
    1. Cheng X., Pang C.C. Increased vasoconstriction to noradrenaline by 1400W, inhibitor of iNOS, in rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 2004;484:263–268. doi: 10.1016/j.ejphar.2003.11.002.
    1. Pop-Busui R., Oral E.A., Raffel D., Byun J., Bajirovic V., Vivekanandan-Giri A., Kellogg A., Pennathur S., Stevens M.J. Impact of rosiglitazone and glyburide on nitrosative stress and myocardial blood flow regulation in type 2 diabetes mellitus. Metabolism. 2009;58:989–994. doi: 10.1016/j.metabol.2009.02.020.
    1. Guzik T.J., West N.E.J., Black E., McDonald D., Ratnatunga C., Pillai R., Channon K.M. Vascular superoxide production by NAD(P)H oxidase: Association with endothelial dysfunction and clinical risk factors. Circ. Res. 2000;86:85. doi: 10.1161/01.RES.86.9.e85.
    1. Szabó C., Zanchi A., Komjáti K., Pacher P., Krolewski A.S., Quist W.C., LoGerfo F.W., Horton E.S., Veves A. Poly(ADP-Ribose) Polymerase Is Activated in Subjects at Risk of Developing Type 2 Diabetes and Is Associated With Impaired Vascular Reactivity. Circulation. 2002;106:2680–2686. doi: 10.1161/01.CIR.0000038365.78031.9C.
    1. Du Y., Smith M.A., Miller C.M., Kern T.S. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J. Neurochem. 2002;80:771–779. doi: 10.1046/j.0022-3042.2001.00737.x.
    1. Leal E.C., Aveleira C., Castilho Á.F., Serra A.M., Baptista F., Hosoya K.-I., Forrester J.V., Ambrósio A.F. High glucose and oxidative/nitrosative stress conditions induce apoptosis in retinal endothelial cells by a caspase-independent pathway. Exp. Eye Res. 2009;88:983–991. doi: 10.1016/j.exer.2008.12.010.
    1. Bereczki D., Balla J. Heme Oxygenase-1: Clinical Relevance in Ischemic Stroke. Curr. Pharm. Des. 2018;24:2229–2235. doi: 10.2174/1381612824666180717101104.
    1. Castilho Á.F., Aveleira C., Leal E.C., Simões N.F., Fernandes C.R., Meirinhos R.I., Baptista F., Ambrósio A.F. Heme Oxygenase-1 Protects Retinal Endothelial Cells against High Glucose- and Oxidative/Nitrosative Stress-Induced Toxicity. PLoS ONE. 2012;7:e42428. doi: 10.1371/journal.pone.0042428.
    1. Hernández-Ramírez E., Sánchez-Chávez G., Estrella-Salazar L.A., Salceda R. Nitrosative Stress in the Rat Retina at the Onset of Streptozotocin-Induced Diabetes. Cell. Physiol. Biochem. 2017;42:2353–2363. doi: 10.1159/000480007.
    1. Sharma S., Saxena S., Srivastav K., Shukla R.K., Mishra N., Meyer C.H., Kruzliak P., Khanna V.K. Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations. Clin. Exp. Ophthalmol. 2015;43:429–436. doi: 10.1111/ceo.12506.
    1. Obrosova I.G., Kador P.F. Aldose reductase/polyol inhibitors for diabetic retinopathy. Curr. Pharm. Biotechnol. 2011;12:373–385. doi: 10.2174/138920111794480642.
    1. Rajesh M., Sulochana K.N., Punitham R., Biswas J., Lakshmi S., Ramakrishnan S. Involvement of oxidative and nitrosative stress in promoting retinal vasculitis in patients with Eales’ disease. Clin. Biochem. 2003;36:377–385. doi: 10.1016/S0009-9120(03)00058-4.
    1. Morelli N.R., Scavuzzi B.M., Miglioranza L.H.D.S., Lozovoy M.A.B., Simão A.N.C., Dichi I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol. Metab. 2018;62:309–318. doi: 10.20945/2359-3997000000036.
    1. Rubio-Ruiz M.E., Peredo-Escárcega A.E., Cano-Martínez A., Guarner-Lans V. An Evolutionary Perspective of Nutrition and Inflammation as Mechanisms of Cardiovascular Disease. Int. J. Evol. Biol. 2015;2015:1–10. doi: 10.1155/2015/179791.
    1. Ovadia H., Haim Y., Nov O., Almog O., Kovsan J., Bashan N., Benhar M., Rudich A. Increased Adipocyte S-Nitrosylation Targets Anti-lipolytic Action of Insulin. J. Biol. Chem. 2011;286:30433–30443. doi: 10.1074/jbc.M111.235945.
    1. Choi M.S., Jung J.-Y., Kim H.-J., Ham M.R., Lee T.R., Shin N.W. S-nitrosylation of fatty acid synthase regulates its activity through dimerization. J. Lipid Res. 2016;57:607–615. doi: 10.1194/jlr.M065805.
    1. Pérez-Torres I., Gutiérrez-Alvarez Y., Guarner-Lans V., Díaz-Díaz E., Pech L.M., Caballero-Chacón S.D.C. Intra-Abdominal Fat Adipocyte Hypertrophy through a Progressive Alteration of Lipolysis and Lipogenesis in Metabolic Syndrome Rats. Nutrition. 2019;11:1529. doi: 10.3390/nu11071529.
    1. Ikura Y., Ohsawa M., Suekane T., Fukushima H., Itabe H., Jomura H., Nishiguchi S., Inoue T., Naruko T., Ehara S., et al. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: Impact on disease progression. Hepatology. 2006;43:506–514. doi: 10.1002/hep.21070.
    1. Botham K.M., Zheng X., Napoletano M., Avella M., Cavallari C., Rivabene R., Bravo E. The effects of dietary n3 polyunsaturated fatty acids delivered in chylomicron renmants on the transcription of genes regulating synthesis and secretion of very-lowdensity lipoprotein by the liver: Modulation by cellular oxidative state. Exp. Biol. Med. 2003;228:143–151. doi: 10.1177/153537020322800203.
    1. Song B.-J., Abdelmegeed M.A., Henderson L.E., Yoo S.-H., Wan J., Purohit V., Hardwick J.P., Moon K.-H. Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2013;2013:1–14. doi: 10.1155/2013/781050.
    1. Pennathur S., Heinecke J.W. Mechanisms for Oxidative Stress in Diabetic Cardiovascular Disease. Antioxid. Redox Signal. 2007;9:955–969. doi: 10.1089/ars.2007.1595.
    1. Keira N., Tatsumi T., Matoba S., Shiraishi J., Yamanaka S., Akashi K., Kobara M., Asayama J., Fushiki S., Fliss H., et al. Lethal Effect of Cytokine-induced Nitric Oxide and Peroxynitrite on Cultured Rat Cardiac Myocytes. J. Mol. Cell. Cardiol. 2002;34:583–596. doi: 10.1006/jmcc.2002.1539.
    1. Cheng X., Kuo K.-H., Pang C.C. Inhibition of iNOS augments cardiovascular action of noradrenaline in streptozotocin-induced diabetes. Cardiovasc. Res. 2004;64:298–307. doi: 10.1016/j.cardiores.2004.06.023.
    1. Baldelli S., Ciriolo M.R. Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging. Aging. 2016;8:3450–3467. doi: 10.18632/aging.101139.
    1. Burwell L., Nadtochiy S.M., Tompkins A., Young S., Brookes P.S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 2006;394:627–634. doi: 10.1042/BJ20051435.
    1. Brown G.C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim. Biophys. Acta BBA Bioenerg. 2001;1504:46–57. doi: 10.1016/S0005-2728(00)00238-3.
    1. Lee M.Y., Griendling K. Redox Signaling, Vascular Function, and Hypertension. Antioxid. Redox Signal. 2008;10:1045–1059. doi: 10.1089/ars.2007.1986.
    1. Julius U., Drel V., Grässler J., Obrosova I.G., Gräßler J. Nitrosylated proteins in monocytes as a new marker of oxidative-nitrosative stress in diabetic subjects with macroangiopathy. Exp. Clin. Endocrinol. Diabetes. 2008;117:72–77. doi: 10.1055/s-2008-1078710.
    1. Csányi G., Taylor W.R., Pagano P.J. NOX and inflammation in the vascular adventitia. Free. Radic. Biol. Med. 2009;47:1254–1266. doi: 10.1016/j.freeradbiomed.2009.07.022.
    1. Bertuglia S., Giusti A. Microvascular oxygenation, oxidative stress, NO suppression and superoxide dismutase during postischemic reperfusion. Am. J. Physiol. Circ. Physiol. 2003;285:H1064–H1071. doi: 10.1152/ajpheart.00124.2003.
    1. Hogg N., Broniowska K.A., Novalija J., Kettenhofen N.J., Novalija E. Role of S-nitrosothiol transport in the cardioprotective effects of S-nitrosocysteine inrat hearts. Free Radic. Biol. Med. 2007;43:1086–1094. doi: 10.1016/j.freeradbiomed.2007.06.016.
    1. Prime T.A., Blaikie F.H., Evans C., Nadtochiy S.M., James A.M., Dahm C.C., Vitturi D.A., Patel R.P., Hiley C.R., Abakumova I., et al. A mitochondria-targeted S-nitro-sothiol modulates respiration, nitrosates thiols, and protects againstischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA. 2009;106:10764–10769. doi: 10.1073/pnas.0903250106.
    1. Mukhopadhyay P., Rajesh M., Bátkai S., Kashiwaya Y., Haskó G., Liaudet L., Szabó C., Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am. J. Physiol. Circ. Physiol. 2009;296:H1466–H1483. doi: 10.1152/ajpheart.00795.2008.
    1. Forstermann U., Munzel T. Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation. 2006;113:1708–1714. doi: 10.1161/CIRCULATIONAHA.105.602532.
    1. Wood K.C., Hebbel R.P., Lefer D.J., Granger D.N. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic. Biol. Med. 2006;40:1443–1453. doi: 10.1016/j.freeradbiomed.2005.12.015.
    1. Tousoulis D., Kampoli A.-M., Papageorgiou C.T.N., Stefanadis C. The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 2012;10:4–18. doi: 10.2174/157016112798829760.
    1. Crabtree M.J., Smith C.L., Lam G., Goligorsky M.S., Gross S. Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am. J. Physiol. Circ. Physiol. 2008;294:H1530–H1540. doi: 10.1152/ajpheart.00823.2007.
    1. Kar S., Kavdia M. Endothelial NO and O2-production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic. Biol. Med. 2013;63:161–174. doi: 10.1016/j.freeradbiomed.2013.04.024.
    1. Huang J., Lin S.C., Nadershahi A., Watts S.W., Sarkar R. Role of redox signaling and poly (adenosine diphosphate-ribose) polymerase activation in vascular smooth muscle cell growth inhibition by nitric oxide and peroxynitrite. J. Vasc. Surg. 2008;47:599–607. doi: 10.1016/j.jvs.2007.11.006.
    1. Stasch J.-P., Schmidt P.M., Nedvetsky P., Nedvetskaya T.Y., Arun Kumar H.S., Meurer S., Deile M., Taye A., Knorr A., Lapp H., et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Investig. 2006;116:2552–2561. doi: 10.1172/JCI28371.
    1. Choi H., Allahdadi K.J., Tostes R.C., Webb R.C. Augmented S-nitrosylation contributes to impaired relaxation in angiotensin II hypertensive mouse aorta. J. Hypertens. 2011;29:2359–2368. doi: 10.1097/HJH.0b013e32834d2554.
    1. Crassous P.-A., Couloubaly S., Huang C., Zhou Z., Baskaran P., Kim D.D., Papapetropoulos A., Fioramonti X., Durán W.N., Beuve A. Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model. Am. J. Physiol. Circ. Physiol. 2012;303:H597–H604. doi: 10.1152/ajpheart.00138.2012.
    1. Cai H., Griendling K., Harrison D.G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci. 2003;24:471–478. doi: 10.1016/S0165-6147(03)00233-5.
    1. Mihm M.J., Wattanapitayakul S.K., Piao S.-F., Hoyt D.G., Bauer J.A. Effects of angiotensin II on vascular endothelial cells: Formation of receptor-mediated reactive nitrogen species. Biochem. Pharmacol. 2003;65:1189–1197. doi: 10.1016/S0006-2952(03)00012-1.
    1. Satoh M., Fujimoto S., Arakawa S., Yada T., Namikoshi T., Haruna Y., Horike H., Sasaki T., Kashihara N. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol. Dial. Transplant. 2008;23:3806–3813. doi: 10.1093/ndt/gfn357.
    1. Kase H., Hashikabe Y., Uchida K., Nakanishi N., Hattori Y. Supplementation with tetrahydrobiopterin prevents the cardiovascular effects of angiotensin II-induced oxidative and nitrosative stress. J. Hypertens. 2005;23:1375–1382. doi: 10.1097/01.hjh.0000173520.13976.7d.
    1. Nie H., Wu J.-L., Zhang M., Xu J., Zou M.-H. Endothelial Nitric Oxide Synthase-Dependent Tyrosine Nitration of Prostacyclin Synthase in Diabetes In Vivo. Diabetes. 2006;55:3133–3141. doi: 10.2337/db06-0505.
    1. Kannel W.B. Prevalence and implications of uncontrolled systolic hypertension. Drugs Aging. 2003;20:277–286. doi: 10.2165/00002512-200320040-00004.
    1. Berk B.C. Vascular smooth muscle growth: Autocrine growth mechanisms. Physiol. Rev. 2001;81:999–1030. doi: 10.1152/physrev.2001.81.3.999.
    1. Zalba G., Beaumont F.J., José G.S., Fortuño A., Díez J. Is the balance between nitric oxide and superoxide altered in spontaneously hypertensive rats with endothelial dysfunction? Nephrol. Dial. Transplant. 2001;16:2–5. doi: 10.1093/ndt/16.suppl_1.2.
    1. Somoza B., González C., Cachofeiro V., Lahera V., Fernandez-Alfonso M.S. Chronic l-arginine treatment reduces vascular smooth muscle cell hypertrophy through cell cycle modifications in spontaneously hypertensive rats. J. Hypertens. 2004;22:751–758. doi: 10.1097/00004872-200404000-00018.
    1. Cabassi A., Dumont E.C., Girouard H., Bouchard J.F., Jossec M.L., Lamontagne D., Besner J.G., De Champlain J. Effects of chronic N-acetylcysteine treatment on the actions of peroxinitrite on aortic vascular reactivity in hypertensive rats. J. Hypertens. 2001;19:1233–1244. doi: 10.1097/00004872-200107000-00008.
    1. Saternos H.C., Almarghalani D.A., Gibson H.M., Meqdad M.A., Antypas R.B., Lingireddy A., AbouAlaiwi W.A. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genom. 2018;50:1–9. doi: 10.1152/physiolgenomics.00062.2017.
    1. Hang P., Zhao J., Qi J., Wang Y., Wu J., Du Z. Novel insights into the pervasive role of M3 muscarinic receptor in cardiac diseases. Curr. Drug Targets. 2013;14:372–377.
    1. Schmidt P., Youhnovski N., Daiber A., Balan A., Arsic M., Bachschmid M., Przybylski M., Ullrich V. Specific nitration at tyrosine 430 revealed by high resolution mass spectrometry as basis for redox regulation of bovine prostacyclin synthase. J. Biol. Chem. 2003;278:12813–12819. doi: 10.1074/jbc.M208080200.
    1. Aggarwal S., Gross C.M., Kumar S., Datar S., Oishi P., Kalkan G., Schreiber C., Fratz S., Fineman J.R., Black S.M., et al. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration. J. Cell. Physiol. 2011;226:3104–3113. doi: 10.1002/jcp.22692.
    1. Zimmerman M.C., Lazartigues E., Sharma R.V., Davisson R.L. Hypertension Caused by Angiotensin II Infusion Involves Increased Superoxide Production in the Central Nervous System. Circ. Res. 2004;95:210–216. doi: 10.1161/01.RES.0000135483.12297.e4.
    1. Francis J., Davisson R. Emerging Concepts in Hypertension. Antioxid. Redox Signal. 2014;20:69–73. doi: 10.1089/ars.2013.5591.
    1. Santos C.X., Nabeebaccus A.A., Shah A., Camargo L.L., Filho S.V., Lopes L. Endoplasmic Reticulum Stress and Nox-Mediated Reactive Oxygen Species Signaling in the Peripheral Vasculature: Potential Role in Hypertension. Antioxid. Redox Signal. 2014;20:121–134. doi: 10.1089/ars.2013.5262.

Source: PubMed

3
Subscribe