The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia

Ziteng Liu, Ying Ying, Ziteng Liu, Ying Ying

Abstract

Coronavirus infection, including SARS-CoV, MERS-CoV, and SARS-CoV2, causes daunting diseases that can be fatal because of lung failure and systemic cytokine storm. The development of coronavirus-evoked pneumonia is associated with excessive inflammatory responses in the lung, known as "cytokine storms," which results in pulmonary edema, atelectasis, and acute lung injury (ALI) or fatal acute respiratory distress syndrome (ARDS). No drugs are available to suppress overly immune response-mediated lung injury effectively. In light of the low toxicity and its antioxidant, anti-inflammatory, and antiviral activity, it is plausible to speculate that curcumin could be used as a therapeutic drug for viral pneumonia and ALI/ARDS. Therefore, in this review, we summarize the mounting evidence obtained from preclinical studies using animal models of lethal pneumonia where curcumin exerts protective effects by regulating the expression of both pro- and anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2, promoting the apoptosis of PMN cells, and scavenging the reactive oxygen species (ROS), which exacerbates the inflammatory response. These studies provide a rationale that curcumin can be used as a therapeutic agent against pneumonia and ALI/ARDS in humans resulting from coronaviral infection.

Keywords: coronavirus; curcumin; cytokine storm; lung injury; pneumonia.

Copyright © 2020 Liu and Ying.

Figures

FIGURE 1
FIGURE 1
The diagram of lung injury caused by virus-induced cytokine storms. (A) The viruses attack alveolar epithelial cells and are recognized by dendritic cells and macrophages, which then release cytokines. (B) Cytokines and chemokines help white blood cells in the blood reach the alveoli. (C) Antigen-presenting cells (dendritic cells) activate lymphocytes. Activated lymphocytes produce and release large amounts of cytokines while attacking infected alveolar epithelial cells. (D) Induce cytokine storm, and capillary leak syndrome. (E) Causes atelectasis, pulmonary edema, pulmonary congestion, and ARDS.
FIGURE 2
FIGURE 2
Curcumin inhibits the production of pro-inflammatory cytokine by targeting the NF-κB pathway. Curcumin targets NF-κB signaling through inhibiting activation of IKKβ, enhancing expression or stability of IκBα, activating AMPK, and targeting P65.
FIGURE 3
FIGURE 3
The effects of curcumin in virus associated with severe pneumonia. Curcumin inhibits virus-induced lung injury through its antivirus, anti-inflammation, antioxidant activity. In addition, curcumin could suppress fibrosis by targeting TGF-β signaling. Abbreviations: Nrf2, nuclear factor erythroid-derived 2; NF-κB, nuclear factor-κB; PPARγ, peroxisome proliferator-activated receptor γ; TNF-α, tumor necrosis factor-alpha; COX2, cyclooxygenase-2; IκB, inhibitor of kappa B; IL, interleukin; JNK, c-Jun N-terminal Kinase; TN-C, tenascin-C; α-SMA, alpha-smooth muscle actin.

References

    1. Alizadeh F., Javadi M., Karami A. A., Gholaminejad F., Kavianpour M., Haghighian H. K. (2018). Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: a randomized clinical trial. Phytother. Res. 32 514–521. 10.1002/ptr.5998
    1. Amalraj A., Varma K., Jacob J., Divya C., Kunnumakkara A. B., Stohs S. J., et al. (2017). A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. J. Med. Food 20 1022–1030. 10.1089/jmf.2017.3930
    1. Amini P., Saffar H., Nourani M. R., Motevaseli E., Najafi M., Ali Taheri R., et al. (2018). Curcumin mitigates radiation-induced lung pneumonitis and fibrosis in rats. Int. J. Mol. Cell. Med. 7 212–219. 10.22088/ijmcm.Bums.7.4.212
    1. Asadi S., Gholami M. S., Siassi F., Qorbani M., Khamoshian K., Sotoudeh G. (2019). Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: a randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med. 43 253–260. 10.1016/j.ctim.2019.02.014
    1. Avasarala S., Zhang F., Liu G., Wang R., London S. D., London L. (2013). Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One 8:e57285. 10.1371/journal.pone.0057285
    1. Baldwin A. S., Jr. (1996). The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14 649–683.
    1. Bamboat Z. M., Ocuin L. M., Balachandran V. P., Obaid H., Plitas G., DeMatteo R. P. (2010). Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Investig. 120 559–569. 10.1172/jci40008
    1. Bansal S., Chhibber S. (2010). Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice. J. Med. Microbiol. 59(Pt 4), 429–437. 10.1099/jmm.0.016873-0
    1. Basu P., Dutta S., Begum R., Mittal S., Dutta P. D., Bharti A. C., et al. (2013). Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pac. J. Cancer Prev. 14 5753–5759. 10.7314/apjcp.2013.14.10.5753
    1. Behrens E. M., Koretzky G. A. (2017). Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol. 69 1135–1143. 10.1002/art.40071
    1. Buchman A. L. (2001). Side effects of corticosteroid therapy. J. Clin. Gastroenterol. 33 289–294. 10.1097/00004836-200110000-00006
    1. Chai Y. S., Chen Y. Q., Lin S. H., Xie K., Wang C. J., Yang Y. Z., et al. (2020). Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed. Pharmacother. 125:109946. 10.1016/j.biopha.2020.109946
    1. Channappanavar R., Fehr A. R., Vijay R., Mack M., Zhao J., Meyerholz D. K., et al. (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19 181–193. 10.1016/j.chom.2016.01.007
    1. Channappanavar R., Perlman S. (2017). “Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39 529–539. 10.1007/s00281-017-0629-x
    1. Chen B., Li H., Ou G., Ren L., Yang X., Zeng M. (2019). Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther. 21:193. 10.1186/s13075-019-1974-z
    1. Chen H., Yang R., Tang Y., Xu J., Feng Y., Liu S., et al. (2017). Effects of curcumin on pulmonary fibrosis and functions of paraquat-challenged rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 29 973–976.
    1. Chen L., Lu Y., Zhao L., Hu L., Qiu Q., Zhang Z., et al. (2018). Curcumin attenuates sepsis-induced acute organ dysfunction by preventing inflammation and enhancing the suppressive function of Tregs. Int. Immunopharmacol. 61 1–7. 10.1016/j.intimp.2018.04.041
    1. Chen X., Zhao B., Qu Y., Chen Y., Xiong J., Feng Y., et al. (2020). Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin. Infect. Dis. 10.1093/cid/ciaa449 [Epub ahead of print].
    1. Cheng K., Yang A., Hu X., Zhu D., Liu K. (2018). Curcumin attenuates pulmonary inflammation in lipopolysaccharide induced acute lung injury in neonatal rat model by activating peroxisome proliferator-activated receptor γ (PPARγ) pathway. Med. Sci. Monit. 24 1178–1184. 10.12659/msm.908714
    1. Cohen A. N., Veena M. S., Srivatsan E. S., Wang M. B. (2009). Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Iκβ kinase. Arch. Otolaryngol. Head Neck Surg. 135 190–197.
    1. Dai J., Gu L., Su Y., Wang Q., Zhao Y., Chen X., et al. (2018). Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int. Immunopharmacol. 54 177–187. 10.1016/j.intimp.2017.11.009
    1. DiSilvestro R. A., Joseph E., Zhao S., Bomser J. (2012). Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J. 11:79. 10.1186/1475-2891-11-79
    1. Du T., Shi Y., Xiao S., Li N., Zhao Q., Zhang A., et al. (2017). Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC Vet. Res. 13:298. 10.1186/s12917-017-1218-x
    1. Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122 877–902. 10.1161/circresaha.117.311401
    1. Green M. S. (2020). Did the hesitancy in declaring COVID-19 a pandemic reflect a need to redefine the term? Lancet 395 1034–1035. 10.1016/s0140-6736(20)30630-9
    1. Han S., Xu J., Guo X., Huang M. (2018). Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production. Clin. Exp. Pharmacol. Physiol. 45 84–93. 10.1111/1440-1681.12848
    1. Hellebrekers P., Vrisekoop N., Koenderman L. (2018). Neutrophil phenotypes in health and disease. Eur. J. Clin. Invest. 48 (Suppl. 2):e12943. 10.1111/eci.12943
    1. Hemeida R., Mohafez O. M. (2008). Curcumin attenuates methotraxate-induced hepatic oxidative damage in rats. J. Egypt. Natl. Canc. Inst. 20 141–148.
    1. Huang K. J., Su I. J., Theron M., Wu Y. C., Lai S. K., Liu C. C., et al. (2005). An interferon-γ-related cytokine storm in SARS patients. J. Med. Virol. 75 185–194. 10.1002/jmv.20255
    1. Jobin C., Bradham C. A., Russo M. P., Juma B., Narula A. S., Brenner D. A., et al. (1999). Curcumin blocks cytokine-mediated NF-κB activation and pro-inflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity. J. Immunol. 163 3474–3483.
    1. Kalil A. C., Thomas P. G. (2019). Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care 23:258.
    1. Kannan S., Kolandaivel P. (2017). Antiviral potential of natural compounds against influenza virus hemagglutinin. Comput. Biol. Chem. 71 207–218. 10.1016/j.compbiolchem.2017.11.001
    1. Khan M. A., Khan M. J. (2018). Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif. Cells Nanomed. Biotechnol. 46 1149–1158. 10.1080/21691401.2018.1446968
    1. Kim S. G., Veena M. S., Basak S. K., Han E., Tajima T., Gjertson D. W., et al. (2011). Curcumin treatment suppresses IKKβ kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin. Cancer Res. 17 5953–5961. 10.1158/1078-0432.ccr-11-1272
    1. Lai Y., Yan Y., Liao S., Li Y., Ye Y., Liu N., et al. (2020). 3D-quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Arch Pharm Res. 10.1007/s12272-020-01230-5 [Epub ahead of print].
    1. Larmonier C. B., Uno J. K., Lee K. M., Karrasch T., Laubitz D., Thurston R., et al. (2008). Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10-dependent mechanism of protection. Am. J. Physiol. Gastrointest. Liver Physiol. 295 G1079–G1091. 10.1152/ajpgi.90365.2008
    1. Lau S. K., Lau C. C., Chan K.-H., Li C. P., Chen H., Jin D.-Y., et al. (2013). Delayed induction of pro-inflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J. Gen. Virol. 94(Pt 12), 2679–2690. 10.1099/vir.0.055533-0
    1. Liu Q., Zhou Y.-H., Yang Z.-Q. (2016). The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 13 3–10. 10.1038/cmi.2015.74
    1. Matthay M. A., Zimmerman G. A. (2005). Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol. 33 319–327. 10.1165/rcmb.F305
    1. McGonagle D., Sharif K., O’Regan A., Bridgewood C. (2020). The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 19:102537. 10.1016/j.autrev.2020.102537
    1. Medzhitov R. (2008). Origin and physiological roles of inflammation. Nature 454 428–435. 10.1038/nature07201
    1. Mollazadeh H., Cicero A. F. G., Blesso C. N., Pirro M., Majeed M., Sahebkar A. (2019). Immune modulation by curcumin: the role of interleukin-10. Crit. Rev. Food Sci. Nutr. 59 89–101. 10.1080/10408398.2017.1358139
    1. Mulligan M., Jones M., Vaporciyan A. A., Howard M., Ward P. (1993). Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J. Immunol. 151 5666–5674.
    1. Netea M. G., Balkwill F., Chonchol M., Cominelli F., Donath M. Y., Giamarellos-Bourboulis E. J., et al. (2017). A guiding map for inflammation. Nat. Immunol. 18 826–831.
    1. Opal S. M., DePalo V. A. (2000). Anti-inflammatory cytokines. Chest 117 1162–1172.
    1. Ou J. L., Mizushina Y., Wang S. Y., Chuang D. Y., Nadar M., Hsu W. L. (2013). Structure–activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J. 280 5829–5840. 10.1111/febs.12503
    1. Peiris J. S., Guan Y., Yuen K. Y. (2004). Severe acute respiratory syndrome. Nat. Med. 10 (Suppl. 12) S88–S97. 10.1038/nm1143
    1. Praditya D., Kirchhoff L., Brüning J., Rachmawati H., Steinmann J., Steinmann E. (2019). Anti-infective properties of the golden spice curcumin. Front. Microbiol. 10:912. 10.3389/fmicb.2019.00912
    1. Ren Y., Yang Z., Sun Z., Zhang W., Chen X., Nie S. (2019). Curcumin relieves paraquat-induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3-mediated inflammatory pathway. Mol. Med. Rep. 20 5032–5040.
    1. Richart S. M., Li Y. L., Mizushina Y., Chang Y. Y., Chung T. Y., Chen G. H., et al. (2018). Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J. Food Drug Anal. 26 1015–1023. 10.1016/j.jfda.2017.12.006
    1. Salminen A., Hyttinen J. M., Kaarniranta K. (2011). AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. 89 667–676. 10.1007/s00109-011-0748-0
    1. Sordillo P. P., Helson L. (2015). Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo 29 1–4.
    1. Straub J. M., New J., Hamilton C. D., Lominska C., Shnayder Y., Thomas S. M. (2015). Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 141 1985–1994. 10.1007/s00432-015-1974-6
    1. Suresh M. V., Wagner M. C., Rosania G. R., Stringer K. A., Min K. A., Risler L., et al. (2012). Pulmonary administration of a water-soluble curcumin complex reduces severity of acute lung injury. Am. J. Respir. Cell Mol. Biol. 47 280–287. 10.1165/rcmb.2011-0175OC
    1. Taniguchi K., Karin M. (2018). NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18 309–324. 10.1038/nri.2017.142
    1. Torres J., Mehandru S., Colombel J. (2017). F, Peyrin-Biroulet L. Crohn’s disease. Lancet 389 1741–1755.
    1. Tyagi N., Dash D., Singh R. (2016). Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model. Inflammopharmacology 24 335–345. 10.1007/s10787-016-0286-z
    1. Vitali D., Bagri P., Wessels J. M., Arora M., Ganugula R., Parikh A., et al. (2020). Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. Int. J. Mol. Sci. 21:337. 10.3390/ijms21010337
    1. Wang W., Ye L., Ye L., Li B., Gao B., Zeng Y., et al. (2007). Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Res. 128 1–8. 10.1016/j.virusres.2007.02.007
    1. Wang X., An X., Wang X., Bao C., Li J., Yang D., et al. (2018). Curcumin ameliorated ventilator-induced lung injury in rats. Biomed. Pharmacother. 98 754–761. 10.1016/j.biopha.2017.12.100
    1. Wang X.-M., Zhang J.-S., Gao Y.-T., Dai Y. (2008). Scavenging effects of curcumin on active oxygens and its anti-oxidation in vitro. Sci. Technol. Food Ind. 7 94–98.
    1. Wang Y., Wang Y., Chen Y., Qin Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. [Epub ahead of print].
    1. Wen C.-C., Kuo Y.-H., Jan J.-T., Liang P.-H., Wang S.-Y., Liu H.-G., et al. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 50 4087–4095. 10.1021/jm070295s
    1. Wheeler A. P., Bernard G. R. (2007). Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369 1553–1564.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., et al. (2020). Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. [Epub ahead of print].
    1. Xiao Z., Xu F., Zhu X., Bai B., Guo L., Liang G., et al. (2019). Inhibition Of JNK phosphorylation by curcumin analog C66 Protects LPS-induced acute lung injury. Drug Des. Dev. Ther. 13 4161–4171. 10.2147/dddt.S215712
    1. Xu F., Diao R., Liu J., Kang Y., Wang X., Shi L. (2015). Curcumin attenuates staphylococcus aureus-induced acute lung injury. Clin. Respir. J. 9 87–97. 10.1111/crj.12113
    1. Xu X.-Y., Meng X., Li S., Gan R.-Y., Li Y., Li H.-B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10:1553. 10.3390/nu10101553
    1. Xu Y., Liu L. (2017). Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. Influenza Other Respir. Viruses 11 457–463. 10.1111/irv.12459
    1. Yang X. X., Li C. M., Li Y. F., Wang J., Huang C. Z. (2017). Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9 16086–16092. 10.1039/c7nr06520e
    1. Yang Y. S., Su Y. F., Yang H. W., Lee Y. H., Chou J. I., Ueng K. C. (2014). Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother. Res. 28 1770–1777. 10.1002/ptr.5197
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. [Epub ahead of print].
    1. Yuan J., Liu R., Ma Y., Zhang Z., Xie Z. (2018). Curcumin attenuates airway inflammation and airway remolding by inhibiting NF-κB signaling and COX-2 in cigarette smoke-induced COPD mice. Inflammation 41 1804–1814. 10.1007/s10753-018-0823-6
    1. Zhang B., Swamy S., Balijepalli S., Panicker S., Mooliyil J., Sherman M. A., et al. (2019). Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J. 33 13294–13309. 10.1096/fj.201901047rr
    1. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., et al. (2016). ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016:4350965. 10.1155/2016/4350965
    1. Zhang Y., Liang D., Dong L., Ge X., Xu F., Chen W., et al. (2015). Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir. Res. 16:43.
    1. Zhu L. N., Mei X., Zhang Z. G., Xie Y. P., Lang F. (2019). Curcumin intervention for cognitive function in different types of people: a systematic review and meta-analysis. Phytother. Res. 33 524–533. 10.1002/ptr.6257

Source: PubMed

3
Subscribe