Impact of CYP19A1 and ESR1 variants on early-onset side effects during combined endocrine therapy in the TEXT trial

Harriet Johansson, Kathryn P Gray, Olivia Pagani, Meredith M Regan, Giuseppe Viale, Valentina Aristarco, Debora Macis, Antonella Puccio, Susanne Roux, Rudolf Maibach, Marco Colleoni, Manuela Rabaglio, Karen N Price, Alan S Coates, Richard D Gelber, Aron Goldhirsch, Roswitha Kammler, Bernardo Bonanni, Barbara A Walley, the TEXT principal investigators, Harriet Johansson, Kathryn P Gray, Olivia Pagani, Meredith M Regan, Giuseppe Viale, Valentina Aristarco, Debora Macis, Antonella Puccio, Susanne Roux, Rudolf Maibach, Marco Colleoni, Manuela Rabaglio, Karen N Price, Alan S Coates, Richard D Gelber, Aron Goldhirsch, Roswitha Kammler, Bernardo Bonanni, Barbara A Walley, the TEXT principal investigators

Abstract

Background: Single nucleotide polymorphisms (SNPs) in the estrogen receptor 1 (ESR1) and cytochrome P450 19A1 (CYP19A1) genes have been associated with breast cancer risk, endocrine therapy response and side effects, mainly in postmenopausal women with early breast cancer. This analysis aimed to assess the association of selected germline CYP19A1 and ESR1 SNPs with early-onset hot flashes, sweating and musculoskeletal symptoms in premenopausal patients enrolled in the Tamoxifen and Exemestane Trial (TEXT).

Methods: Blood was collected from consenting premenopausal women with hormone-responsive early breast cancer, randomly assigned to 5-years of tamoxifen plus ovarian suppression (OFS) or exemestane plus OFS. DNA was extracted with QIAamp kits and genotyped for two CYP19A1 (rs4646 and rs10046) and three ESR1 (rs2077647, rs2234693 and rs9340799) SNPs by a real-time pyrosequencing technique. Adverse events (AEs) were recorded at baseline and 3-monthly during the first year. Associations of the genotype variants with grade ≥2 early-onset targeted AEs of hot flashes/sweating or musculoskeletal events were assessed using logistic regression models.

Results: There were 2660 premenopausal patients with breast cancer in the intention-to-treat population of TEXT, and 1967 (74 %) are included in this translational study. The CYP19A1 rs10046 variant T/T, represented in 23 % of women, was associated with a reduced incidence of grade ≥2 hot flashes/sweating (univariate odds ratio (OR) = 0.78; 95 % CI 0.63-0.97; P = 0.03), more strongly in patients assigned exemestane + OFS (TT vs CT/CC: OR = 0.65, 95 % CI = 0.48-0.89) than assigned tamoxifen + OFS (OR = 0.94, 95 % CI = 0.69-1.27, interaction P = 0.03). No association with any of the CYP19A1/ESR1 genotypes and musculoskeletal AEs was found.

Conclusion: The CYP19A1 rs10046 variant T/T favors lower incidence of hot flashes/sweating under exemestane + OFS treatment, suggesting endocrine-mediated effects. Based on findings from others, this SNP may potentially enhance treatment adherence and treatment efficacy. We plan to evaluate the clinical impact of this polymorphism during time, pending sufficient median follow up.

Trial registration: ClinicalTrials.gov NCT00066703, registered August 6, 2003.

Keywords: Aromatase inhibitors; Breast cancer; CYP19A1; ESR1; Ovarian suppression; Side effects; Tamoxifen.

Figures

Fig. 1
Fig. 1
Derivation of the Tamoxifen and Exemestane Trial (TEXT) translational cohort from the intention-to-treat (ITT) population. The translational cohort includes patients whose blood was available for DNA analysis. GNRHa triptorelin was required for the first 6 months, any time after which the patient could choose to undergo bilateral oophorectomy or bilateral ovarian radiotherapy. E exemestane, T tamoxifen, OFS ovarian function suppression, LFU lost to follow up, CRF case report form

References

    1. Burstein HJ, Lacchetti C, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline update on ovarian suppression. J Clin Oncol. 2016;34:1689–701. doi: 10.1200/JCO.2015.65.9573.
    1. Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology clinical practice guideline focused update. J Clin Oncol. 2014;32:2255–69. doi: 10.1200/JCO.2013.54.2258.
    1. Dowsett M, Forbes JF, Bradley R, Ingle J, Aihara T, Bliss J, et al. Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015;386:1341–52. doi: 10.1016/S0140-6736(15)61074-1.
    1. Pagani O, Regan MM, Walley BA, Fleming GF, Colleoni M, Lang I, et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med. 2014;371:107–18. doi: 10.1056/NEJMoa1404037.
    1. Schover LR. Premature ovarian failure and its consequences: vasomotor symptoms, sexuality, and fertility. J Clin Oncol. 2008;26:753–8. doi: 10.1200/JCO.2007.14.1655.
    1. Gallicchio L, Miller SR, Kiefer J, Greene T, Zacur HA, Flaws JA. Risk factors for hot flashes among women undergoing the menopausal transition: baseline results from the Midlife Women's Health Study. Menopause. 2015;22:1098–107. doi: 10.1097/GME.0000000000000434.
    1. Dennerstein L, Lehert P, Burger HG, Guthrie JR. New findings from non-linear longitudinal modelling of menopausal hormone changes. Hum Reprod Update. 2007;13:551–7. doi: 10.1093/humupd/dmm022.
    1. Dugan SA, Powell LH, Kravitz HM, Everson Rose SA, Karavolos K, Luborsky J. Musculoskeletal pain and menopausal status. Clin J Pain. 2006;22:325–31. doi: 10.1097/01.ajp.0000208249.07949.d5.
    1. Freedman RR. Pathophysiology and treatment of menopausal hot flashes. Semin Reprod Med. 2005;23:117–25. doi: 10.1055/s-2005-869479.
    1. Freeman EW, Sammel MD, Sanders RJ. Risk of long-term hot flashes after natural menopause: evidence from the Penn Ovarian Aging Study cohort. Menopause. 2014;21:924–32. doi: 10.1097/GME.0000000000000196.
    1. Stearns V, Ullmer L, Lopez JF, Smith Y, Isaacs C, Hayes D. Hot flushes. Lancet. 2002;360:1851–61. doi: 10.1016/S0140-6736(02)11774-0.
    1. Niravath P. Aromatase inhibitor-induced arthralgia: a review. Ann Oncol. 2013;24:1443–9. doi: 10.1093/annonc/mdt037.
    1. Villa P, Lassandro AP, Amar ID, Vacca L, Moruzzi MC, Ferrandina G, et al. Impact of aromatase inhibitor treatment on vertebral morphology and bone mineral density in postmenopausal women with breast cancer. Menopause. 2016;23:33–9. doi: 10.1097/GME.0000000000000515.
    1. Schimdt N, Jacob L, Coleman R, Kostev K, Hadji P. The impact of treatment compliance on fracture risk in women with breast cancer treated with aromatase inhibitors in the United Kingdom. Breast Cancer Res Treat. 2016;155:151–7. doi: 10.1007/s10549-015-3661-3.
    1. Dunning AM, Dowsett M, Healey CS, Tee L, Luben RN, Folkerd E, et al. Polymorphisms associated with circulating sex hormone levels in postmenopausal women. J Natl Cancer Inst. 2004;96:936–45. doi: 10.1093/jnci/djh167.
    1. Wang L, Ellsworth KA, Moon I, Pelleymounter LL, Eckloff BW, Martin YN, et al. Functional genetic polymorphisms in the aromatase gene CYP19 vary the response of breast cancer patients to neoadjuvant therapy with aromatase inhibitors. Cancer Res. 2010;70:319–28. doi: 10.1158/0008-5472.CAN-09-3224.
    1. Haiman CA, Dossus L, Setiawan VW, Stram DO, Dunning AM, Thomas G, et al. Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res. 2007;67:1893–7. doi: 10.1158/0008-5472.CAN-06-4123.
    1. Artigalas O, Vanni T, Hutz MH, Shton-Prolla P, Schwartz IV. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis. BMC Med. 2015;13:139. doi: 10.1186/s12916-015-0373-9.
    1. Ding SL, Yu JC, Chen ST, Hsu GC, Hsu HM, Ho JY, et al. Diverse associations between ESR1 polymorphism and breast cancer development and progression. Clin Cancer Res. 2010;16:3473–84. doi: 10.1158/1078-0432.CCR-09-3092.
    1. Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet. 2009;41:324–8. doi: 10.1038/ng.318.
    1. Herrington DM, Howard TD, Brosnihan KB, McDonnell DP, Li X, Hawkins GA, et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation. 2002;105:1879–82. doi: 10.1161/01.CIR.0000016173.98826.88.
    1. Onland-Moret NC, van Gils CH, Roest M, Grobbee DE, Peeters PH. The estrogen receptor alpha gene and breast cancer risk (The Netherlands) Cancer Causes Control. 2005;16:1195–202. doi: 10.1007/s10552-005-0307-5.
    1. Li LW, Xu L. Menopausal status modifies breast cancer risk associated with ESR1 PvuII and XbaI polymorphisms in Asian women: a HuGE review and meta-analysis. Asian Pac J Cancer Prev. 2012;13:5105–11. doi: 10.7314/APJCP.2012.13.10.5105.
    1. Zhang Y, Zhang M, Yuan X, Zhang Z, Zhang P, Chao H, et al. Association between ESR1 PvuII, XbaI, and P325P polymorphisms and breast cancer susceptibility: a meta-analysis. Med Sci Monit. 2015;21:2986–96. doi: 10.12659/MSM.894010.
    1. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA. 2004;292:2105–14. doi: 10.1001/jama.292.17.2105.
    1. de Mattos CS, Trevisan CM, Peluso C, Adami F, Cordts EB, Christofolini DM, et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J Ovarian Res. 2014;7:114. doi: 10.1186/s13048-014-0114-2.
    1. L'Esperance S, Frenette S, Dionne A, Dionne JY. Pharmacological and non-hormonal treatment of hot flashes in breast cancer survivors: CEPO review and recommendations. Support Care Cancer. 2013;21:1461–74. doi: 10.1007/s00520-013-1732-8.
    1. Hope ACBA. Simplified Monte Carlo significance test procedure. J Roy Stat Soc B. 1968;30:582–98.
    1. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol. 2005;23:9067–72. doi: 10.1200/JCO.2004.01.0454.
    1. Fontein DB, Houtsma D, Nortier JW, Baak-Pablo RF, Kranenbarg EM, van der Straaten TR, et al. Germline variants in the CYP19A1 gene are related to specific adverse events in aromatase inhibitor users: a substudy of Dutch patients in the TEAM trial. Breast Cancer Res Treat. 2014;144:599–606. doi: 10.1007/s10549-014-2873-2.
    1. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2009;101:1446–52. doi: 10.1093/jnci/djp335.
    1. Henry NL, Skaar TC, Dantzer J, Li L, Kidwell K, Gersch C, et al. Genetic associations with toxicity-related discontinuation of aromatase inhibitor therapy for breast cancer. Breast Cancer Res Treat. 2013;138:807–16. doi: 10.1007/s10549-013-2504-3.
    1. Lunardi G, Piccioli P, Bruzzi P, Notaro R, Lastraioli S, Serra M, et al. Plasma estrone sulfate concentrations and genetic variation at the CYP19A1 locus in postmenopausal women with early breast cancer treated with letrozole. Breast Cancer Res Treat. 2013;137:167–74. doi: 10.1007/s10549-012-2306-z.
    1. Mao JJ, Su HI, Feng R, Donelson ML, Aplenc R, Rebbeck TR, et al. Association of functional polymorphisms in CYP19A1 with aromatase inhibitor associated arthralgia in breast cancer survivors. Breast Cancer Res. 2011;13:R8. doi: 10.1186/bcr2813.
    1. Wang J, Lu K, Song Y, Xie L, Zhao S, Wang Y, et al. Indications of clinical and genetic predictors for aromatase inhibitors related musculoskeletal adverse events in Chinese Han women with breast cancer. PLoS ONE. 2013;8:e68798. doi: 10.1371/journal.pone.0068798.
    1. van Duijnhoven FJ, Peeters PH, Warren RM, Bingham SA, Uitterlinden AG, Van Noord PA, et al. Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density. Cancer Epidemiol Biomarkers Prev. 2006;15:462–7. doi: 10.1158/1055-9965.EPI-05-0754.
    1. Henry NL, Azzouz F, Desta Z, Li L, Nguyen AT, Lemler S, et al. Predictors of aromatase inhibitor discontinuation as a result of treatment-emergent symptoms in early-stage breast cancer. J Clin Oncol. 2012;30:936–42. doi: 10.1200/JCO.2011.38.0261.
    1. Fontein DB, Seynaeve C, Hadji P, Hille ET, van de Water W, Putter H, et al. Specific adverse events predict survival benefit in patients treated with tamoxifen or aromatase inhibitors: an international tamoxifen exemestane adjuvant multinational trial analysis. J Clin Oncol. 2013;31:2257–64. doi: 10.1200/JCO.2012.45.3068.
    1. Mortimer JE, Flatt SW, Parker BA, Gold EB, Wasserman L, Natarajan L, et al. Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer Res Treat. 2008;108:421–6. doi: 10.1007/s10549-007-9612-x.
    1. Cuzick J, Sestak I, Cella D, Fallowfield L. Treatment-emergent endocrine symptoms and the risk of breast cancer recurrence: a retrospective analysis of the ATAC trial. Lancet Oncol. 2008;9:1143–8. doi: 10.1016/S1470-2045(08)70259-6.
    1. Huober J, Cole BF, Rabaglio M, Giobbie-Hurder A, Wu J, Ejlertsen B, et al. Symptoms of endocrine treatment and outcome in the BIG 1–98 study. Breast Cancer Res Treat. 2014;143:159–69. doi: 10.1007/s10549-013-2792-7.
    1. Stearns V, Chapman JA, Ma CX, Ellis MJ, Ingle JN, Pritchard KI, et al. Treatment-associated musculoskeletal and vasomotor symptoms and relapse-free survival in the NCIC CTG MA.27 adjuvant breast cancer aromatase inhibitor trial. J Clin Oncol. 2015;33:265–71. doi: 10.1200/JCO.2014.57.6926.

Source: PubMed

3
Subscribe