Transcutaneous spinal direct current stimulation

Filippo Cogiamanian, Gianluca Ardolino, Maurizio Vergari, Roberta Ferrucci, Matteo Ciocca, Emma Scelzo, Sergio Barbieri, Alberto Priori, Filippo Cogiamanian, Gianluca Ardolino, Maurizio Vergari, Roberta Ferrucci, Matteo Ciocca, Emma Scelzo, Sergio Barbieri, Alberto Priori

Abstract

In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability ("brain polarization" or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS) on somatosensory potentials (SEPs) evoked in healthy subjects by posterior tibial nerve (PTN) stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30) without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials (LEPs), tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic, and segmental motor systems. Here we review currently available experimental evidence that non-invasive spinal cord stimulation (SCS) influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive SCS in managing various pathologic conditions, including pain.

Keywords: pain; spinal cord; transcranial direct current stimulation; transcutaneous spinal direct current stimulation.

References

    1. Aguilar J., Pulecchi F., Dilena R., Oliviero A., Priori A., Foffani G. (2011). Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. J. Physiol. (Lond.) 589, 4981–4996
    1. Ardolino G., Bossi B., Barbieri S., Priori A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J. Physiol. (Lond.) 568, 653–66310.1113/jphysiol.2005.088310
    1. Baker J. M., Rorden C., Fridriksson J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41, 1229–123610.1161/STROKEAHA.109.569764
    1. Bhadra N., Kilgore K. L. (2004). Direct current electrical conduction block of peripheral nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 313–32410.1109/TNSRE.2004.834205
    1. Bindman L. J., Lippold O. C., Redfearn J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. (Lond.) 172, 369–382
    1. Cogiamanian F., Vergari M., Pulecchi F., Marceglia S., Priori A. (2008). Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin. Neurophysiol. 119, 2636–264010.1016/j.clinph.2008.07.249
    1. Cogiamanian F., Vergari M., Schiaffi E., Marceglia S., Ardolino G., Barbieri S., Priori A. (2011). Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 152, 370–37510.1016/j.pain.2010.10.041
    1. Cruccu G., Anand P., Attal N., Garcia-Larrea L., Haanpaa M., Jorum E., Serra J., Jensen T. S. (2004). EFNS guidelines on neuropathic pain assessment. Eur. J. Neurol. 11, 153–16210.1111/j.1468-1331.2004.00791.x
    1. Dubuisson D. (1989). Effect of dorsal-column stimulation on gelatinosa and marginal neurons of cat spinal cord. J. Neurosurg. 70, 257–26510.3171/jns.1989.70.2.0257
    1. Frey M. E., Manchikanti L., Benyamin R. M., Schultz D. M., Smith H. S., Cohen S. P. (2009). Spinal cord stimulation for patients with failed back surgery syndrome: a systematic review. Pain Physician 12, 379–397
    1. Grabow T. S., Tella P. K., Raja S. N. (2003). Spinal cord stimulation for complex regional pain syndrome: an evidence-based medicine review of the literature. Clin. J. Pain 19, 371–38310.1097/00002508-200311000-00005
    1. Grey M. J., Klinge K., Crone C., Lorentzen J., Biering-Sorensen F., Ravnborg M., Nielsen J. B. (2008). Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp. Brain Res. 185, 189–19710.1007/s00221-007-1142-6
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–224710.1093/brain/awf238
    1. Mailis-Gagnon A., Furlan A. D., Sandoval J. A., Taylor R. (2004). Spinal cord stimulation for chronic pain. Cochrane Database Syst. Rev. 3, CD003783.
    1. McCreery D. B., Agnew W. F., Yuen T. G., Bullara L. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans. Biomed. Eng. 37, 996–100110.1109/10.102812
    1. Melzack R., Wall P. D. (1965). Pain mechanisms: a new theory. Science 150, 971–97910.1126/science.150.3699.971
    1. Murphy D. N., Boggio P., Fregni F. (2009). Transcranial direct current stimulation as a therapeutic tool for the treatment of major depression: insights from past and recent clinical studies. Curr. Opin. Psychiatry 22, 306–31110.1097/YCO.0b013e32832a133f
    1. Nitsche M. A., Boggio P. S., Fregni F., Pascual-Leone A. (2009). Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp. Neurol. 219, 14–1910.1016/j.expneurol.2009.03.038
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., Henning S., Tergau F., Paulus W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. (Lond.) 553, 293–30110.1113/jphysiol.2003.049916
    1. Nitsche M. A., Liebetanz D., Lang N., Antal A., Tergau F., Paulus W. (2003b). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin. Neurophysiol. 114, 2220–2222; author reply 2222–2223.10.1016/S1388-2457(03)00235-9
    1. Oakley J. C., Prager J. P. (2002). Spinal cord stimulation: mechanisms of action. Spine 27, 2574–258310.1097/00007632-200211150-00034
    1. O’connell N. E., Wand B. M., Marston L., Spencer S., Desouza L. H. (2011). Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 47, 309–326
    1. Paulus W. (2004). Outlasting excitability shifts induced by direct current stimulation of the human brain. Suppl. Clin. Neurophysiol. 57, 708–71410.1016/S1567-424X(09)70411-8
    1. Priori A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 114, 589–59510.1016/S1388-2457(03)00236-0
    1. Priori A., Bossi B., Ardolino G., Bertolasi L., Carpo M., Nobile-Orazio E., Barbieri S. (2005). Pathophysiological heterogeneity of conduction blocks in multifocal motor neuropathy. Brain 128, 1642–164810.1093/brain/awh513
    1. Priori A., Hallett M., Rothwell J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul. 2, 241–24510.1016/j.brs.2009.02.004
    1. Purpura D. P., McMurtry J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. J. Neurophysiol. 28, 166–185
    1. Romaniello A., Iannetti G. D., Truini A., Cruccu G. (2003). Trigeminal responses to laser stimuli. Neurophysiol. Clin. 33, 315–32410.1016/j.neucli.2003.10.010
    1. Sandrini G., Serrao M., Rossi P., Romaniello A., Cruccu G., Willer J. C. (2005). The lower limb flexion reflex in humans. Prog. Neurobiol. 77, 353–39510.1016/j.pneurobio.2005.11.003
    1. Schlaug G., Marchina S., Wan C. Y. (2011). The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychol. Rev. 21, 288–30110.1007/s11065-011-9181-y
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–5310.1177/1073858410386614
    1. Treede R. D., Meyer R. A., Raja S. N., Campbell J. N. (1995). Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J. Physiol. (Lond.) 483(Pt 3), 747–758
    1. Truini A., Panuccio G., Galeotti F., Maluccio M. R., Sartucci F., Avoli M., Cruccu G. (2010). Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. Eur. J. Pain 14, 222–22510.1016/j.ejpain.2009.05.001
    1. Truini A., Vergari M., Biasiotta A., La Cesa S., Gabriele M., Di Stefano G., Cambieri C., Cruccu G., Inghilleri M., Priori A. (2011). Transcutaneous spinal direct current stimulation inhibits nociceptive spinal pathway conduction and increases pain tolerance in humans. Eur. J. Pain 15, 1023–102710.1016/j.ejpain.2011.04.009
    1. Ubbink D. T., Vermeulen H. (2005). Spinal cord stimulation for non reconstructable chronic critical leg ischaemia. Cochrane Database Syst. Rev. 3, CD004001.
    1. Winkler T., Hering P., Straube A. (2010). Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin. Neurophysiol. 121, 957–96110.1016/j.clinph.2010.01.014
    1. Yuen T. G., Agnew W. F., Bullara L. A., Jacques S., McCreery D. B. (1981). Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery 9, 292–29910.1227/00006123-198109000-00013

Source: PubMed

3
Subscribe