Dysbiosis of gut microbiota in promoting the development of colorectal cancer

Shaomin Zou, Lekun Fang, Mong-Hong Lee, Shaomin Zou, Lekun Fang, Mong-Hong Lee

Abstract

Gastrointestinal microbiome, containing at least 100 trillion bacteria, resides in the mucosal surface of human intestine. Recent studies show that perturbations in the microbiota may influence physiology and link to a number of diseases, including colon tumorigenesis. Colorectal cancer (CRC), the third most common cancer, is the disease resulting from multi-genes and multi-factors, but the mechanistic details between gut microenvironment and CRC remain poorly characterized. Thanks to new technologies such as metagenome sequencing, progress in large-scale analysis of the genetic and metabolic profile of gut microbial has been possible, which has facilitated studies about microbiota composition, taxonomic alterations and host interactions. Different bacterial species and their metabolites play critical roles in the development of CRC. Also, microbiota is important in the inflammatory response and immune processes deregulation during the development and progression of CRC. This review summarizes current studies regarding the association between gastrointestinal microbiota and the development of CRC, which provides insights into the therapeutic strategy of CRC.

Keywords: colorectal cancer; gut microbiota; microbiome dysbiosis; tumorigenesis.

Figures

Figure 1.
Figure 1.
Influence of TLR signaling on carcinogenesis by microbiota. (A) Dysbiosis of the luminal microbiota, such as the increase of Fusobacterium, induces the expression of TLR4, which activates the calcium-dependent calcineurin and NFAT. In addition, once the TLR4 is activated, it leads to the activation of NF-κb, resulting in the change of several miRNA expressions, including miR21. Finally, tumor growth is promoted. (B) TLR5 could recognize bacterium flagellin and induce the activation of NF-κb, regulating the expression of some inflammation-associated cytokines. (C) Bacteroides fragilis produces polysaccharide A and suppresses anti-microbial immune responses via TLR2 signaling, which promotes the inflammatory T-helper 17 responses whilst inhibiting the Foxp3+ regulatory T cells. TLR, Toll-like receptor; NF-κb, nuclear factor κb; NFAT, nuclear factor of activated T cells; ILC3, Innate lymphoid cells 3.
Figure 2.
Figure 2.
Microbiome affects immunotherapy efficacy. (A) Anti-CTLA4 antibodies impair function of Treg and increase Bacteroides, thereby improving the anti-tumor response mediated by immune checkpoint blockade (Anti-CTLA4). Antibiotics treatment can dampen the T-cell-mediated anti-tumor immune responses. (B) Bifidobacterium promotes DC activation and subsequent anti-tumor T-cell responses of anti-PD-L1 therapy. CTLA4, cytotoxic T-lymphocyte-associated antigen-4; Treg, regulatory T cells; DC, dentric cells; PD-L1, programmed cell death protein ligand 1.
Figure 3.
Figure 3.
Bacterial metabolites affect inflammation and gene expression. Bacterial metabolites, including SCFAs, interact with GPR41, GPR43 and GPR109A on host cells. Butyrate interacts with GPR109A, promoting the differentiation of Treg and activating macrophages and CD+ T cells to induce IL10 and TGFβ, thereby blocking inflammation. Butyrate and propionate, after being transported into host cells, cause HDAC inhibition, resulting in hyperacetylation of histones. The HDAC inhibition leads to cell cycle arrest, apoptosis induction and angiogenesis suppression. SCFAs, short-chain fatty acids; GPR, G protein-coupled receptor; Treg, regulatory T cells; IL10, interleukin 10; TGFβ, tumor growth factor β; HDAC, histone deacetylase.

References

    1. Roncucci L, Mariani F.. Prevention of colorectal cancer: how many tools do we have in our basket? Eur J Intern Med 2015;26:752–6.
    1. Chen W, Zheng R, Zeng H. et al. Annual report on status of cancer in China, 2011. Chin J Cancer Res 2015;27:2–12.
    1. Torre LA, Bray F, Siegel RL. et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.
    1. Kocarnik JM, Shiovitz S, Phipps AI.. Molecular phenotypes of colorectal cancer and potential clinical applications. Gastroenterol Rep (Oxf) 2015;3:269–76.
    1. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330–7.
    1. Reimers MS, Zeestraten EC, Kuppen PJ. et al. Biomarkers in precision therapy in colorectal cancer. Gastroenterol Rep (Oxf) 2013;1:166–83.
    1. Yu J, Feng Q, Wong SH. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66:70–8.
    1. Feng Q, Liang S, Jia H. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6:6528.
    1. Boccellato F, Meyer TF.. Bacteria moving into focus of human cancer. Cell Host Microbe 2015;17:728–30.
    1. Loo TM, Kamachi F, Watanabe Y. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 2017;7:522–38.
    1. Marchesi JR, Adams DH, Fava F. et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65:330–9.
    1. He Q, Li X, Liu C. et al. Dysbiosis of the fecal microbiota in the TNBS-induced Crohn’s disease mouse model. Appl Microbiol Biotechnol 2016;100:4485–94.
    1. Xiao L, Feng Q, Liang S. et al. A catalog of the mouse gut metagenome. Nat Biotechnol 2015;33:1103–8.
    1. Erdman SE, Poutahidis T.. Gut bacteria and cancer. Biochim Biophys Acta 2015;1856:86–90.
    1. Sears CL, Garrett WS.. Microbes, microbiota, and colon cancer. Cell Host Microbe 2014;15:317–28.
    1. Faith JJ, Guruge JL, Charbonneau M. et al. The long-term stability of the human gut microbiota. Science 2013;341:1237439.
    1. Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60.
    1. Tang WH, Hazen SL.. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014;124:4204–11.
    1. Holmes E, Li JV, Athanasiou T. et al. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 2011;19:349–59.
    1. Tsilimigras MC, Fodor A, Jobin C.. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2017;2:17008.
    1. Cani PD, Plovier H, Van Hul M. et al. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016;12:133–43.
    1. Ahn J, Sinha R, Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013;105:1907–11.
    1. Yu YN, Fang JY.. Gut microbiota and colorectal cancer. Gastrointest Tumors 2015;2:26–32.
    1. Chen CC, Lin WC, Kong MS. et al. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue. Br J Nutr 2012;107:1623–34.
    1. Gagniere J, Raisch J, Veziant J. et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016;22:501–18.
    1. Abreu MT, Peek RM Jr.. Gastrointestinal malignancy and the microbiome. Gastroenterology 2014;146:1534–46 e3.
    1. Kummen M, Holm K, Anmarkrud JA. et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017;66:611–19.
    1. Baxter NT, Zackular JP, Chen GY. et al. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome 2014;2:20.
    1. Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299–306.
    1. Mima K, Nishihara R, Qian ZR. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65:1973–80.
    1. Leung A, Tsoi H, Yu J.. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol 2015;9:651–7.
    1. Kostic AD, Chun E, Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14:207–15.
    1. Keku TO, McCoy AN, Azcarate-Peril AM.. Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol 2013;21:506–8.
    1. Kostic AD, Gevers D, Pedamallu CS. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292–8.
    1. Mima K, Sukawa Y, Nishihara R. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015;1:653–61.
    1. Gur C, Ibrahim Y, Isaacson B. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42:344–55.
    1. Rubinstein MR, Wang X, Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14:195–206.
    1. Fardini Y, Wang X, Temoin S. et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol Microbiol 2011;82:1468–80.
    1. Arthur JC, Gharaibeh RZ, Muhlbauer M. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014;5:4724.
    1. Arthur JC, Jobin C.. The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes 2013;4:253–8.
    1. Arthur JC, Perez-Chanona E, Muhlbauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338:120–3.
    1. Bonnet M, Buc E, Sauvanet P. et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014;20:859–67.
    1. Martin HM, Campbell BJ, Hart CA. et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004;127:80–93.
    1. Buc E, Dubois D, Sauvanet P. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013;8:e56964.
    1. Taieb F, Petit C, Nougayrede JP, Oswald E.. The enterobacterial genotoxins: cytolethal distending toxin and colibactin. EcoSal Plus 2016;7: doi: 10.1128/ecosalplus.ESP-0008–2016.
    1. Nougayrede JP, Homburg S, Taieb F. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006;313:848–51.
    1. Ge Z, Schauer DB, Fox JG.. In vivo virulence properties of bacterial cytolethal-distending toxin. Cell Microbiol 2008;10:1599–1607.
    1. Ge Z, Feng Y, Whary MT. et al. Cytolethal distending toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice. Infect Immun 2005;73:3559–67.
    1. Pratt JS, Sachen KL, Wood HD. et al. Modulation of host immune responses by the cytolethal distending toxin of Helicobacter hepaticus. Infect Immun 2006;74:4496–4504.
    1. Ge Z, Rogers AB, Feng Y. et al. Bacterial cytolethal distending toxin promotes the development of dysplasia in a model of microbially induced hepatocarcinogenesis. Cell Microbiol 2007;9:2070–80.
    1. Huang JY, Lee SM, Mazmanian SK.. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011;17:137–41.
    1. Boleij A, Hechenbleikner EM, Goodwin AC. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60:208–15.
    1. Sears CL, Geis AL, Housseau F.. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014;124:4166–72.
    1. Geis AL, Fan H, Wu X. et al. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 2015;5:1098–1109.
    1. Grivennikov S, Karin E, Terzic J. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009;15:103–13.
    1. Thiele Orberg E, Fan H, Tam AJ. et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol 2017;10:421–33.
    1. Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect 2014;44:1–8.
    1. Ambalam P, Raman M, Purama RK. et al. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016;30:119–31.
    1. Liu D, Jiang XY, Zhou LS. et al. Effects of probiotics on intestinal mucosa barrier in patients with colorectal cancer after operation: meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016;95:e3342.
    1. Sivan A, Corrales L, Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015;350:1084–9.
    1. Wallace BD, Wang H, Lane KT. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:831–5.
    1. Kim Y, Lee D, Kim D. et al. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 2008;31:468–73.
    1. Evrard B, Coudeyras S, Dosgilbert A. et al. Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 2011;6:e18735.
    1. Gamallat Y, Meyiah A, Kuugbee ED. et al. Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother 2016;83:536–41.
    1. Kuugbee ED, Shang X, Gamallat Y. et al. Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci 2016;61:2908–20.
    1. Dong L, Li J, Liu Y. et al. Toll-like receptor 2 monoclonal antibody or/and Toll-like receptor 4 monoclonal antibody increase counts of Lactobacilli and Bifidobacteria in dextran sulfate sodium-induced colitis in mice. J Gastroenterol Hepatol 2012;27:110–19.
    1. Ciorba MA, Riehl TE, Rao MS. et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut 2012;61:829–38.
    1. Dulal S, Keku TO.. Gut microbiome and colorectal adenomas. Cancer J 2014;20:225–31.
    1. Dejea CM, Wick EC, Hechenbleikner EM. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 2014;111:18321–6.
    1. Round JL, Mazmanian SK.. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–23.
    1. Belkaid Y, Hand TW.. Role of the microbiota in immunity and inflammation. Cell 2014;157:121–41.
    1. Todoric J, Antonucci L, Karin M.. Targeting inflammation in cancer prevention and therapy. Cancer Prev Res (Phila) 2016;9:895–905.
    1. Savari S, Vinnakota K, Zhang Y. et al. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World J Gastroenterol 2014;20:968–77.
    1. Loddo I, Romano C.. Inflammatory bowel disease: genetics, epigenetics, and pathogenesis. Front Immunol 2015;6:551.
    1. Taurog JD, Richardson JA, Croft JT. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994;180:2359–64.
    1. Claesson MH, Bregenholt S, Bonhagen K. et al. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype. J Immunol 1999;162:3702–10.
    1. Annacker O, Burlen-Defranoux O, Pimenta-Araujo R. et al. Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J Immunol 2000;164:3573–80.
    1. Barnich N, Darfeuille-Michaud A.. Adherent-invasive Escherichia coli and Crohn’s disease. Curr Opin Gastroenterol 2007;23:16–20.
    1. Wu S, Rhee KJ, Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15:1016–22.
    1. Rabizadeh S, Rhee KJ, Wu S. et al. Enterotoxigenic bacteroides fragilis: a potential instigator of colitis. Inflamm Bowel Dis 2007;13:1475–83.
    1. Ryz NR, Patterson SJ, Zhang Y. et al. Active vitamin D (1,25-dihydroxyvitamin D3) increases host susceptibility to Citrobacter rodentium by suppressing mucosal Th17 responses. Am J Physiol Gastrointest Liver Physiol 2012;303:G1299–311.
    1. Sokol H, Seksik P, Furet JP. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15:1183–9.
    1. Strauss J, Kaplan GG, Beck PL. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 2011;17:1971–8.
    1. Nazareth N, Magro F, Machado E. et al. Prevalence of Mycobacterium avium subsp. paratuberculosis and Escherichia coli in blood samples from patients with inflammatory bowel disease. Med Microbiol Immunol 2015;204:681–92.
    1. Thaiss CA, Levy M, Korem T. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 2016;167:1495–510.e12.
    1. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010;10:131–44.
    1. O’Neill LAJ, Golenbock D, Bowie AG.. The history of Toll-like receptors [mdash] redefining innate immunity. Nat Rev Immunol 2013;13:453–60.
    1. Peuker K, Muff S, Wang J. et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 2016;22:506–15.
    1. Lee SH, Hu LL, Gonzalez-Navajas J. et al. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 2010;16:665–70.
    1. Lowe EL, Crother TR, Rabizadeh S. et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS One 2010;5:e13027.
    1. Rakoff-Nahoum S, Hao L, Medzhitov R.. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity 2006;25:319–29.
    1. Round JL, Lee SM, Li J. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332:974–7.
    1. van Helden SF, van den Dries K, Oud MM. et al. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation. J Immunol 2010;184:1280–91.
    1. Wang EL, Qian ZR, Nakasono M. et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010;102:908–15.
    1. Wang AC, Su QB, Wu FX. et al. Role of TLR4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells. Eur J Clin Invest 2009;39:157–64.
    1. Yesudhas D, Gosu V, Anwar MA. et al. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol 2014;5:334.
    1. Lopes JA, Borges-Canha M, Pimentel-Nunes P.. Innate immunity and hepatocarcinoma: can toll-like receptors open the door to oncogenesis? World J Hepatol 2016;8:162–82.
    1. Chen GY, Liu M, Wang F. et al. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 2011;186:7187–94.
    1. Singh PP, Sharma PK, Krishnan G. et al. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep (Oxf) 2015;3:289–97.
    1. Iida N, Dzutsev A, Stewart CA. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013;342:967–70.
    1. Snyder A, Pamer E, Wolchok J.. Immunotherapy: could microbial therapy boost cancer immunotherapy? Science 2015;350:1031–2.
    1. Vetizou M, Pitt JM, Daillere R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015;350:1079–84.
    1. Dubin K, Callahan MK, Ren B. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016;7:10391.
    1. Belcheva A, Irrazabal T, Martin A.. Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays 2015;37:403–12.
    1. Kovatcheva-Datchary P, Nilsson A, Akrami R. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab 2015;22:971–82.
    1. He XX, Tu SM, Lee MH. et al. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol 2011;22:2640–5.
    1. He X, Esteva FJ, Ensor J. et al. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol 2012;23:1771–80.
    1. Yun J, Rago C, Cheong I. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009;325:1555–9.
    1. Scatena R, Bottoni P, Giardina B.. Mitochondria, PPARs, and cancer: is receptor-independent action of PPAR agonists a key? PPAR Res 2008;2008:256251.
    1. Vander Heiden MG. Targeting cell metabolism in cancer patients. Sci Transl Med 2010;2:31ed1.
    1. Bernstein AM, Song M, Zhang X. et al. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLoS One 2015;10:e0135959.
    1. Hester CM, Jala VR, Langille MG. et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol 2015;21:2759–69.
    1. Russell WR, Hoyles L, Flint HJ. et al. Colonic bacterial metabolites and human health. Curr Opin Microbiol 2013;16:246–54.
    1. Bultman SJ, Jobin C.. Microbial-derived butyrate: an oncometabolite or tumor-suppressive metabolite? Cell Host Microbe 2014;16:143–5.
    1. Krautkramer KA, Kreznar JH, Romano KA. et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 2016;64:982–92.
    1. Belcheva A, Irrazabal T, Robertson SJ. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014;158:288–99.
    1. Augenlicht LH, Mariadason JM, Wilson A. et al. Short chain fatty acids and colon cancer. J Nutr 2002;132:3804s–8s.
    1. Fung KY, Brierley GV, Henderson S. et al. Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response. J Proteome Res 2011;10:1860–9.
    1. Rodriguez-Cabezas ME, Galvez J, Lorente MD. et al. Dietary fiber down-regulates colonic tumor necrosis factor alpha and nitric oxide production in trinitrobenzenesulfonic acid-induced colitic rats. J Nutr 2002;132:3263–71.
    1. Inan MS, Rasoulpour RJ, Yin L. et al. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 2000;118:724–34.
    1. Uchiyama K, Sakiyama T, Hasebe T. et al. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Sci Rep 2016;6:32094.
    1. Tong LC, Wang Y, Wang ZB. et al. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front Pharmacol 2016;7:253.
    1. O’Neill AM, Burrington CM, Gillaspie EA. et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer. Nutr Res 2016;36:1325–34.
    1. Li T, Chiang JY.. Bile acids as metabolic regulators. Curr Opin Gastroenterol 2015;31:159–65.
    1. Ridlon JM, Kang DJ, Hylemon PB. et al. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014;30:332–8.
    1. Haeusler RA, Astiarraga B, Camastra S. et al. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 2013;62:4184–91.
    1. Kuipers F, Bloks VW, Groen AK.. Beyond intestinal soap—bile acids in metabolic control. Nat Rev Endocrinol 2014;10:488–98.
    1. Fang S, Suh JM, Reilly SM. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 2015;21:159–65.
    1. Duparc T, Plovier H, Marrachelli VG. et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2017;66:620–32.
    1. Selmin OI, Fang C, Lyon AM. et al. Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells. J Nutr 2016;146:236–42.
    1. Ding L, Yang L, Wang Z. et al. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B 2015;5:135–44.
    1. Ha YH, Park DG.. Effects of DCA on cell cycle proteins in colonocytes. J Korean Soc Coloproctol 2010;26:254–9.
    1. Farhana L, Nangia-Makker P, Arbit E. et al. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther 2016;7:181.
    1. Wu H, Lin Y, Li W. et al. Regulation of Nur77 expression by beta-catenin and its mitogenic effect in colon cancer cells. FASEB J 2011;25:192–205.
    1. Kong Y, Bai PS, Sun H. et al. The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. Int J Biochem Cell Biol 2012;44:2321–32.
    1. Baek MK, Park JS, Park JH. et al. Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett 2010;290:123–8.
    1. Lee HY, Crawley S, Hokari R. et al. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int J Oncol 2010;36:941–53.
    1. Cheng K, Chen Y, Zimniak P. et al. Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. Biochim Biophys Acta 2002;1588:48–55.
    1. Centuori SM, Gomes CJ, Trujillo J. et al. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta 2016;1861:663–70.
    1. Ajouz H, Mukherji D, Shamseddine A.. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 2014;12:164.
    1. Ignacio Barrasa J, Olmo N, Perez-Ramos P. et al. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 2011;16:1054–67.
    1. Byrne AM, Foran E, Sharma R. et al. Bile acids modulate the Golgi membrane fission process via a protein kinase Ceta and protein kinase D-dependent pathway in colonic epithelial cells. Carcinogenesis 2010;31:737–44.
    1. Centuori SM, Martinez JD.. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 2014;59:2367–80.
    1. Earnest DL, Holubec H, Wali RK. et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res 1994;54:5071–4.
    1. Wali RK, Khare S, Tretiakova M. et al. Ursodeoxycholic acid and F(6)-D(3) inhibit aberrant crypt proliferation in the rat azoxymethane model of colon cancer: roles of cyclin D1 and E-cadherin. Cancer Epidemiol Biomarkers Prev 2002;11:1653–62.
    1. Khare S, Mustafi R, Cerda S. et al. Ursodeoxycholic acid suppresses Cox-2 expression in colon cancer: roles of Ras, p38, and CCAAT/enhancer-binding protein. Nutr Cancer 2008;60:389–400.
    1. Khare S, Cerda S, Wali RK. et al. Ursodeoxycholic acid inhibits Ras mutations, wild-type Ras activation, and cyclooxygenase-2 expression in colon cancer. Cancer Res 2003;63:3517–23.
    1. Abdel-Latif MM, Inoue H, Reynolds JV.. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur J Cancer Prev 2016;25:368–79.
    1. Im E, Martinez JD.. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J Nutr 2004;134:483–6.
    1. Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013;19:576–85.
    1. Orlich MJ, Singh PN, Sabate J. et al. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med 2015;175:767–76.
    1. Tang WH, Wang Z, Levison BS. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575–84.
    1. Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57–63.
    1. Bae S, Ulrich CM, Neuhouser ML. et al. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res 2014;74:7442–52.
    1. Xu R, Wang Q, Li L.. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics 2015;16 (Suppl 7):S4.
    1. Wu S, Morin PJ, Maouyo D. et al. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003;124:392–400.
    1. Holton J. Enterotoxigenic Bacteroides fragilis. Curr Infect Dis Rep 2008;10:99–104.
    1. Singh N, Gurav A, Sivaprakasam S. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014;40:128–39.
    1. Akin H, Tozun N.. Diet, microbiota, and colorectal cancer. J Clin Gastroenterol 2014;48 (Suppl 1):S67–9.
    1. Boonanantanasarn K, Gill AL, Yap Y. et al. Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect Immun 2012;80:3545–58.
    1. Biarc J, Nguyen IS, Pini A. et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis). Carcinogenesis 2004;25:1477–84.
    1. Epplein M, Pawlita M, Michel A. et al. Helicobacter pylori protein-specific antibodies and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2013;22:1964–74.
    1. Balamurugan R, Rajendiran E, George S. et al. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 2008;23:1298–1303.
    1. Lopez-Siles M, Khan TM, Duncan SH. et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012;78:420–8.
    1. Li Y, Zhang X, Wang L. et al. Distribution and gene mutation of enteric flora carrying beta-glucuronidase among patients with colorectal cancer. Int J Clin Exp Med 2015;8:5310–16.

Source: PubMed

3
Subscribe