A dose-ranging, parallel group, split-face, single-blind phase II study of light emitting diode-red light (LED-RL) for skin scarring prevention: study protocol for a randomized controlled trial

Julie K Nguyen, Jeremy Weedon, Jeannette Jakus, Edward Heilman, R Rivkah Isseroff, Daniel M Siegel, Jared R Jagdeo, Julie K Nguyen, Jeremy Weedon, Jeannette Jakus, Edward Heilman, R Rivkah Isseroff, Daniel M Siegel, Jared R Jagdeo

Abstract

Background: Skin fibrosis is a significant global health problem that affects over 100 million people annually and has a profoundly negative impact on quality of life. Characterized by excessive fibroblast proliferation and collagen deposition, skin fibrosis underlies a wide spectrum of dermatologic conditions ranging from pathologic scars secondary to injury (e.g., burns, surgery, trauma) to immune-mediated diseases. Effective anti-scarring therapeutics remain an unmet need, underscoring the importance of developing novel approaches to treat and prevent skin fibrosis. Our in vitro data show that light emitting diode-red light (LED-RL) can modulate key cellular and molecular processes involved in skin fibrosis. In two phase I clinical trials (STARS 1 and STARS 2), we demonstrated the safety and tolerability of LED-RL at fluences of 160 J/cm2 up to 480 J/cm2 on normal human skin.

Methods/design: CURES (Cutaneous Understanding of Red-light Efficacy on Scarring) is a dose-ranging, randomized, parallel group, split-face, single-blind, mock-controlled phase II study to evaluate the efficacy of LED-RL to limit post-surgical skin fibrosis in subjects undergoing elective mini-facelift surgery. Thirty subjects will be randomly allocated to three treatment groups to receive LED-RL phototherapy or temperature-matched mock irradiation (control) to either periauricular incision site at fluences of 160 J/cm2, 320 J/cm2, or 480 J/cm2. Starting one week post-surgery (postoperative days 4-8), treatments will be administered three times weekly for three consecutive weeks, followed by efficacy assessments at 30 days, 3 months, and 6 months. The primary endpoint is the difference in scar pliability between LED-RL-treated and control sites as determined by skin elasticity and induration measurements. Secondary outcomes include clinical and photographic evaluations of scars, 3D skin imaging analysis, histological and molecular analyses, and adverse events.

Discussion: LED-RL is a therapeutic modality of increasing importance in dermatology, and has the potential to limit skin fibrosis clinically by decreasing dermal fibroblast activity and collagen production. The administration of LED-RL phototherapy in the early postoperative period may optimize wound healing and prevent excessive scarring. The results from this study may change the current treatment paradigm for fibrotic skin diseases and help to pioneer LED-RL as a safe, non-invasive, cost-effective, portable, at-home therapy for scars.

Trial registration: ClinicalTrials.gov, NCT03795116 . Registered on 20 December 2018.

Keywords: Hypertrophic scar; Keloid; Light emitting diode; Phototherapy; Red light; Scarring; Skin fibrosis; Surgery; Wound healing.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study design for the CURES trial. LED-RL light emitting diode-red light, POD postoperative day

References

    1. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2009;214(2):199–210. doi: 10.1002/path.2277.
    1. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–1040. doi: 10.1038/nm.2807.
    1. Uitto J. Fibrotic skin diseases. Arch Dermatol. 1990;126(5):661. doi: 10.1001/archderm.1990.01670290105019.
    1. Luzina IG, Atamas SP. Fibrotic skin diseases. In: Gaspari A, Tyring S, editors. Clinical and basic immunodermatology. London: Springer London; 2008. pp. 721–737.
    1. Trace AP, Enos CW, Mantel A, Harvey VM. Keloids and hypertrophic scars: A spectrum of clinical challenges. Am J Clin Dermatol. 2016;17(3):201–223. doi: 10.1007/s40257-016-0175-7.
    1. Lee H, Jang Y. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids. Int J Mol Sci. 2018;19(3):711. doi: 10.3390/ijms19030711.
    1. Bayat A, McGrouther D, Ferguson M. Skin scarring. BMJ. 2003;326(7380):88–92. doi: 10.1136/bmj.326.7380.88.
    1. Bush JA, McGrouther DA, Young VL, Herndon DN, Longaker MT, Mustoe TA, et al. Recommendations on clinical proof of efficacy for potential scar prevention and reduction therapies. Wound Repair Regen. 2011;19(SUPPL. 1):s32–s37. doi: 10.1111/j.1524-475X.2010.00607.x.
    1. Bock O, Schmid-Ott G, Malewski P, Mrowietz U. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res. 2006;297(10):433–438. doi: 10.1007/s00403-006-0651-7.
    1. Brown BC, McKenna SP, Siddhi K, McGrouther DA, Bayat A. The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthetic Surg. 2008;61(9):1049–1058. doi: 10.1016/j.bjps.2008.03.020.
    1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2010;17(6):763–771. doi: 10.1111/j.1524-475X.2009.00543.x.
    1. Tziotzios C, Profyris C, Sterling J. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics: Part II. Strategies to reduce scar formation after dermatologic procedures. J Am Acad Dermatol. 2012;66(1):13–24. doi: 10.1016/j.jaad.2011.08.035.
    1. Gold MH, Berman B, Clementoni MT, Gauglitz GG, Nahai F, Murcia C. Updated international clinical recommendations on scar management: Part 1 - Evaluating the evidence. Dermatol Surg. 2014;40(8):817–824.
    1. Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, et al. Scarless wound healing: Chasing the holy grail. Plast Reconstr Surg. 2015;135(3):907–917. doi: 10.1097/PRS.0000000000000972.
    1. Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol. 2012;132(7):1901–1907. doi: 10.1038/jid.2011.476.
    1. Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW. Effects of visible light on the skin. Photochem Photobiol. 2008;84(2):450–462. doi: 10.1111/j.1751-1097.2007.00286.x.
    1. Chung H, Dai T, Sharma S, Huang Y-Y, Carroll J, Hamblin M. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–533. doi: 10.1007/s10439-011-0454-7.
    1. Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, et al. Light-emitting diodes: A brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36–44.
    1. Jagdeo J, Austin E, Mamalis A, Wong C, Ho D, Siegel DM. Light-emitting diodes in dermatology: A systematic review of randomized controlled trials. Lasers Surg Med. 2018;50(6):613–628. doi: 10.1002/lsm.22791.
    1. Ablon G. Phototherapy with light emitting diodes: Treating a broad range of medical and aesthetic conditions in dermatology. J Clin Aesthet Dermatol. 2018;11(2):21–27.
    1. American Society for Dermatologic Surgery. 2017 ASDS survey on dermatologic procedures.. Accessed 12 Oct 2018.
    1. Hession MT, Markova A, Graber EM. A review of hand-held, home-use cosmetic laser and light devices. Dermatol Surg. 2015;41(3):307–320. doi: 10.1097/DSS.0000000000000283.
    1. Sakamoto FH, Avram MM, Anderson RR. Lasers and Other Energy-Based Technologies - Principles and Skin Interactions. In: Bolognia J, Schaffer J, Cerroni L, editors. Dermatology. 4th ed. Philadelphia: Elsevier; 2018. p. 2354–63.
    1. Jagdeo JR, Adams LE, Brody NI, Siegel DM. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One. 2012;7(10):1–10. doi: 10.1371/journal.pone.0047460.
    1. Campbell SM, Tyrrell J, Marshall R, Curnow A. Effect of MAL-photodynamic therapy on hypertrophic scarring. Photodiagn Photodyn Ther. 2010;7(3):183–188. doi: 10.1016/j.pdpdt.2010.07.003.
    1. Nie Z, Bayat A, Behzad F, Rhodes LE. Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed. 2010;26(6):330–332. doi: 10.1111/j.1600-0781.2010.00539.x.
    1. Sakamoto FH, Izikson L, Tannous Z, Zurakowski D, Anderson RR. Surgical scar remodelling after photodynamic therapy using aminolaevulinic acid or its methylester: A retrospective, blinded study of patients with field cancerization. Br J Dermatol. 2012;166(2):413–416. doi: 10.1111/j.1365-2133.2011.10576.x.
    1. Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg. 2013;39(8):1167–1170. doi: 10.1111/dsu.12212.
    1. Mamalis A, Jagdeo J. Light-emitting diode-generated red light inhibits keloid fibroblast proliferation. Dermatol Surg. 2015;41(1):35–39. doi: 10.1097/01.DSS.0000452650.06765.51.
    1. Mamalis A, Jagdeo J. High-fluence light-emitting diode–generated red light modulates the transforming growth factor-beta pathway in human skin fibroblasts. Dermatol Surg. 2018;44(10):1317–1322. doi: 10.1097/DSS.0000000000001549.
    1. Mamalis A, Koo E, Garcha M, Murphy WJ, Isseroff RR, Jagdeo J. High fluence light emitting diode-generated red light modulates characteristics associated with skin fibrosis. J Biophotonics. 2016;9(11–12):1167–1179. doi: 10.1002/jbio.201600059.
    1. Ho D, Kraeva E, Wun T, Isseroff RR, Jagdeo J. A single-blind, dose escalation, phase I study of high-fluence light-emitting diode-red light (LED-RL) on human skin: Study protocol for a randomized controlled trial. Trials. 2016;17(1):1–7. doi: 10.1186/s13063-015-1128-9.
    1. Photo Therapeutics Inc . Omnilux new-U user guide. 2008. pp. 1–17.
    1. Photo Therapeutics Inc . Omnilux clear-U user guide. 2009. pp. 1–17.
    1. Longaker MT, Rohrich RJ, Greenberg L, Furnas H, Wald R, Bansal V, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014;134(3):536–546. doi: 10.1097/PRS.0000000000000417.
    1. Sadick NS. A study to determine the efficacy of a novel handheld light-emitting diode device in the treatment of photoaged skin. J Cosmet Dermatol. 2008;7(4):263–267. doi: 10.1111/j.1473-2165.2008.00404.x.
    1. Sadick NS. Handheld LED array device in the treatment of acne vulgaris. J Drugs Dermatol. 2008;7(4):347–350.
    1. Wainwright NJ, Dawe RS, Ferguson J. Narrowband ultraviolet B (TL-01) phototherapy for psoriasis: Which incremental regimen? Br J Dermatol. 1998;139(3):410–414. doi: 10.1046/j.1365-2133.1998.02403.x.
    1. Calzavara-Pinton PG, Sala R, Arisi M, Rossi MT, Venturini M, Ortel B. Synergism between narrowband ultraviolet B phototherapy and etanercept for the treatment of plaque-type psoriasis. Br J Dermatol. 2013;169(1):130–136. doi: 10.1111/bjd.12277.
    1. Anderson KL, Feldman SR. A guide to prescribing home phototherapy for patients with psoriasis: The appropriate patient, the type of unit, the treatment regimen, and the potential obstacles. J Am Acad Dermatol. 2015;72(5):868–878. doi: 10.1016/j.jaad.2015.02.003.
    1. Food and Drug Administration . 510(k) Summary of safety and effectiveness for the Photo Therapeutics Limited Omnilux New-U. 2008.
    1. Food and Drug Administration . 510(k) Summary of safety and effectiveness for the Photo Therapeutics Limited Omnilux Plus. 2009.
    1. Huang Y-Y, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy – an update. Dose Response. 2011;9(4):602–618. doi: 10.2203/dose-response.11-009.Hamblin.
    1. Photo Therapeutics Inc . Omnilux medical treatment protocols. 2009. pp. 1–13.
    1. Sun D, Yu Z, Chen J, Wang L, Han L, Liu N. The value of using a SkinFibroMeter for diagnosis and assessment of secondary lymphedema and associated fibrosis of lower limb skin. Lymphat Res Biol. 2017;15(1):70–76. doi: 10.1089/lrb.2016.0029.
    1. Kim MA, Kim EJ, Lee HK. Use of SkinFibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscanner. Skin Res Technol. 2018;24(3):466–471. doi: 10.1111/srt.12455.
    1. Virén T, Iivarinen JT, Sarin JK, Harvima I, Mayrovitz HN. Accuracy and reliability of a hand-held in vivo skin indentation device to assess skin elasticity. Int J Cosmet Sci. 2018;40(2):134–140. doi: 10.1111/ics.12444.
    1. Iivarinen JT, Korhonen RK, Jurvelin JS. Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device - significance of indentation geometry and soft tissue thickness. Skin Res Technol. 2014;20(3):347–354. doi: 10.1111/srt.12125.
    1. Fearmonti R, Bond J, Erdmann D, Levinson H. A review of scar scales and scar measuring devices. J Plast Surg. 2010;10:e43.
    1. Vercelli S, Ferriero G, Sartorio F, Stissi V, Franchignoni F. How to assess postsurgical scars: A review of outcome measures. Disabil Rehabil. 2009;25(31):2055–2063. doi: 10.3109/09638280902874196.
    1. Van De Kar AL, Corion LUM, Smeulders MJC, Draaijers LJ, Van Der Horst CMAM, Van Zuijlen PPM. Reliable and feasible evaluation of linear scars by the patient and observer scar assessment scale. Plast Reconstr Surg. 2005;116(2):514–522. doi: 10.1097/01.prs.0000172982.43599.d6.
    1. Truong PT, Lee JC, Soer B, Gaul CA, Olivotto IA. Reliability and validity testing of the patient and observer scar assessment scale in evaluating linear scars after breast cancer surgery. Plast Reconstr Surg. 2007;119(2):487–494. doi: 10.1097/01.prs.0000252949.77525.bc.
    1. Draaijers LJ, Tempelman FRH, Botman YAM, Tuinebreijer WE, Middelkoop E, Kreis RW, et al. The Patient and Observer Scar Assessment Scale: A reliable and feasible tool for scar evaluation. Plast Reconstr Surg. 2004;113(7):1960–1965. doi: 10.1097/01.PRS.0000122207.28773.56.
    1. Bae SH, Bae YC. Analysis of frequency of use of different scar assessment scales based on the scar condition and treatment method. Arch Plast Surg. 2014;41(2):111–115. doi: 10.5999/aps.2014.41.2.111.
    1. Liu X, Nelemans PJ, Van Winden M, Kelleners-Smeets NWJ, Mosterd K. Reliability of the Patient and Observer Scar Assessment Scale and a 4-point scale in evaluating linear facial surgical scars. J Eur Acad Dermatol Venereol. 2017;31(2):341–346. doi: 10.1111/jdv.13805.
    1. Micomonaco DC, Fung K, Mount G, Franklin J, Yoo J, Brandt M, et al. Development of a new visual analogue scale for the assessment of area scars. J Otolaryngol Head Neck Surg. 2009;38(1):77–89.
    1. Duncan JAL, Bond JS, Mason T, Ludlow A, Cridland P, O’Kane S, et al. Visual analogue scale scoring and ranking: A suitable and sensitive method for assessing scar quality? Plast Reconstr Surg. 2006;118(4):909–918. doi: 10.1097/01.prs.0000232378.88776.b0.
    1. Nappez T, Immonen A. Development and validation of a non-invasive spatially resolved spectroscopy probe for collagen and water determination. San Diego: International Society for Bioengineering and the Skin Meeting; 2018.
    1. Zhang N, Shi K, Hong L, Zhao J, Yu J. Antera 3D camera: A novel method for evaluating the therapeutic efficacy of fractional CO2 laser for surgical incision scars. J Cosmet Dermatol. 2018; Epub ahead of print.
    1. Linming F, Wei H, Anqi L, Yuanyu C, Heng X, Sushmita P, et al. Comparison of two skin imaging analysis instruments: The VISIA®from Canfield vs the ANTERA 3D®CS from Miravex. Skin Res Technol. 2018;24(1):3–8. doi: 10.1111/srt.12381.
    1. Matias AR, Ferreira M, Costa P, Neto P. Skin colour, skin redness and melanin biometric measurements: Comparison study between Antera 3D, Mexameter and Colorimeter. Skin Res Technol. 2015;21(3):346–362. doi: 10.1111/srt.12199.
    1. Cuttle L, Nataatmadja M, Fraser JF, Kempf M, Kimble RM, Hayes MT. Collagen in the scarless fetal skin wound: Detection with Picrosirius-polarization. Wound Repair Regen. 2005;13(2):198–204. doi: 10.1111/j.1067-1927.2005.130211.x.
    1. Food and Drug Administration . Code of federal regulations: Investigational new drug application, 21 CFR 312.32. 2018.
    1. Urbaniak G, Plous S. Research randomizer. 2013.
    1. Jagdeo J, Shumaker PR. Traumatic scarring. JAMA Dermatol. 2017;153(3):364. doi: 10.1001/jamadermatol.2016.5232.
    1. Son D, Harijan A. Overview of surgical scar prevention and management. J Korean Med Sci. 2014;29(6):751–757. doi: 10.3346/jkms.2014.29.6.751.
    1. Block L, Gosain A, King TW. Emerging therapies for scar prevention. Adv Wound Care. 2015;4(10):607–614. doi: 10.1089/wound.2015.0646.
    1. Kerwin LY, El Tal AK, Stiff MA, Fakhouri TM. Scar prevention and remodeling: A review of the medical, surgical, topical and light treatment approaches. Int J Dermatol. 2014;53(8):922–936. doi: 10.1111/ijd.12436.
    1. Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: Basic science, current treatments, and future directions. Adv Wound Care. 2018;7(2):29–45. doi: 10.1089/wound.2016.0696.
    1. Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, et al. Mechanical forces in cutaneous wound healing: Emerging therapies to minimize scar formation. Adv Wound Care. 2018;7(2):47–56. doi: 10.1089/wound.2016.0709.
    1. Karmisholt KE, Haerskjold A, Karlsmark T, Waibel J, Paasch U, Haedersdal M. Early laser intervention to reduce scar formation – a systematic review. J Eur Acad Dermatol Venereol. 2018;32(7):1099–1110. doi: 10.1111/jdv.14856.
    1. Karmisholt KE, Wenande E, Thaysen-Petersen D, Philipsen PA, Paasch U, Haedersdal M. Early intervention with non-ablative fractional laser to improve cutaneous scarring—A randomized controlled trial on the impact of intervention time and fluence levels. Lasers Surg Med. 2018;50(1):28–36. doi: 10.1002/lsm.22707.
    1. Song H, Tan J, Fu Q, Huang L, Ao M. Comparative efficacy of intralesional triamcinolone acetonide injection during early and static stage of pathological scarring. J Cosmet Dermatol. 2018; Epub ahead of print.
    1. Butler ST, Fosko SW. Increased prevalence of left-sided skin cancers. J Am Acad Dermatol. 2010;63(6):1006–1010. doi: 10.1016/j.jaad.2009.11.032.
    1. Wa CV, Maibach HI. Mapping the human face: Biophysical properties. Skin Res Technol. 2010;16(1):38–54. doi: 10.1111/j.1600-0846.2009.00400.x.
    1. Kleesz P, Darlenski R, Fluhr JW. Full-body skin mapping for six biophysical parameters: Baseline values at 16 anatomical sites in 125 human subjects. Skin Pharmacol Physiol. 2011;25(1):25–33. doi: 10.1159/000330721.
    1. Gupta V, Winocour J, Shi H, Shack RB, Grotting JC, Higdon KK. Preoperative risk factors and complication rates in facelift: Analysis of 11,300 patients. Aesthetic Surg J. 2015;36(1):1–13. doi: 10.1093/asj/sjv162.
    1. American Society of Plastic Surgeons. 2017 Plastic surgery statistics report. . Accessed 8 Sept 2018.
    1. Farage MA, Miller KW, Eisner P, Maibach HI. Functional and physiological characteristics of the aging skin. Aging Clin Exp Res. 2008;20(3):195–200. doi: 10.1007/BF03324769.
    1. Varani J, Dame MK, Rittie L, Fligiel SEG, Kang S, Fisher GJ, et al. Decreased collagen production in chronologically aged skin. Am J Pathol. 2006;168(6):1861–1868. doi: 10.2353/ajpath.2006.051302.
    1. Thomas DW, Hopkinson I, Harding KG, Shepherd JP. The pathogenesis of hypertrophic/keloid scarring. Int J Oral Maxillofac Surg. 1994;23(4):232–236. doi: 10.1016/S0901-5027(05)80377-7.
    1. Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: A mini-review. Gerontology. 2013;59(2):159–164. doi: 10.1159/000342344.
    1. Bond JS, Duncan JAL, Sattar A, Boanas A, Mason T, O’Kane S, et al. Maturation of the human scar: An observational study. Plast Reconstr Surg. 2008;121(5):1650–1658. doi: 10.1097/PRS.0b013e31816a9f6f.
    1. Marcus JR, Tyrone JW, Bonomo S, Xia Y, Mustoe TA. Cellular mechanisms for diminished scarring with aging. Plast Reconstr Surg. 2000;105(5):1591–1599. doi: 10.1097/00006534-200004050-00001.
    1. Mokos ZB, Jović A, Grgurević L, Dumić-Čule I, Kostović K, Čeović R, et al. Current therapeutic approach to hypertrophic scars. Front Med. 2017;4:1–11. doi: 10.3389/fmed.2017.00083.
    1. Gold MH, McGuire M, Mustoe TA, Pusic A, Sachdev M, Waibel J, et al. Updated international clinical recommendations on scar management: Part 2 - Algorithms for scar prevention and treatment. Dermatol Surg. 2014;40(8):825–831.

Source: PubMed

3
Subscribe