Demineralization prevention with a new antibacterial restorative composite containing QASi nanoparticles: an in situ study

Peter Rechmann, Charles Q Le, Benjamin W Chaffee, Beate M T Rechmann, Peter Rechmann, Charles Q Le, Benjamin W Chaffee, Beate M T Rechmann

Abstract

Objectives: To investigate whether a newly developed dental composite with quaternary ammonium silica dioxide (QASi) nanoparticles incorporated with other fillers into the restorative material demonstrates antibacterial activity by reducing enamel demineralization in an in situ gap model.

Materials and methods: Twenty subjects wearing a lower removable partial denture (RPD) with acrylic flanges on both sides of the mouth were recruited into the 4-week in situ study. The gap model consisted of an enamel slab placed next to a composite, separated by a 38-μm space. In the split-mouth design on one side of the RPD, the composite was the Nobio Infinix composite (Nobio Ltd., Kadima, Israel), and the contralateral side used a control composite. Each participant received enamel slabs from one tooth. The gap model was recessed into the RPD buccal flange, allowing microbial plaque to accumulate within the gap. After 4 weeks of continuous wearing, decalcification (∆Z mineral loss) of the enamel slabs adjacent to the gap was determined by cross-sectional microhardness testing in the laboratory.

Results: The ∆Z for the antibacterial composite test side was 235±354 (mean±standard deviation [SD]; data reported from 17 participants) and statistically significantly lower compared to ∆Z of the control side (774±556; mean±SD) (paired t-test, P<0.0001; mean of test minus control -539 (SD=392), 95% confidence interval of difference: -741, -338).

Conclusions: This in situ clinical study showed that composites with QASi antibacterial particles significantly reduced demineralization in enamel adjacent to a 38-μm gap over a 4-week period in comparison to a conventional composite.

Clinical relevance: Composites with QASi nanoparticle technology have the potential to reduce the occurrence of secondary caries.

Trial registration: ClinicalTrials.gov #NCT04059250.

Keywords: Antibacterial composite; Enamel demineralization; Gap model; In situ clinical trial; Quaternary ammonium silica dioxide particles; Secondary caries.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Figures

Fig. 1
Fig. 1
The gap model. a Schematic of the gap model with the enamel slab on the left, the composite on the right, and the defined gap between the composite and the enamel slab, created by a 38-μm-thin matrix band inserted during the composite placement, all prepared inside an acrylic bathtub-like form; red acid–resistant nail varnish covering the top of the enamel slab; “A – arrow” pointing at the level inside the depth of the gap where cross-sectional hardness testing in the laboratory will occur after wear time in the mouth; “W” marking the wall lesion enamel surface. b Enamel slab removed from the acrylic form and ready for embedding in epoxy resin. c Enamel slab ground down 600 to 800 μm from the top surface, exposing flat surface showing cross-sectional microhardness indentations
Fig. 2
Fig. 2
Schematics demonstrating the process from cutting the tooth up to integrating the gap models in the RPD denture flanges, with a cutting off the dental crown at the cemento-enamel junction; b cutting the buccal crown surface into 2 identical slabs; c example of a gap model with the enamel slab, the composite, and the defined gap created by inserting a 38-μm-thin Tofflemire matrix band next to the enamel slab during the incremental placing of the composite at the opposite side of the enamel, in order to simulate a gap “around” a composite filling; d a gap model in front of the right flange and acrylic removed from the flange allowing the gap model to fit inside the flange; e gap model placed inside the flange, firmly locked in the flange using a composite; and f overview of the lower partial denture with one gap model integrated in the right denture flange and the other in the left flange (not visible in this picture)
Fig. 3
Fig. 3
Knoop hardness indent placement for cross-sectional microhardness testing in a schematic graph with typical positions of the indents in a scatter pattern, with “W” marking the wall lesion enamel surface; indents occur on the cross-sectional surface (perpendicular to the wall lesion caused by the microbial plaque in the gap); the light microscopical picture shows typical microhardness indents placed, starting at an area 15 μm under the enamel surface
Fig. 4
Fig. 4
Individual ∆Z mineral loss (vol% × μm) for the control and for the antibacterial composite side for 17 study participants (participants #1 to #17); in all cases, the ∆Z mineral loss for the antibacterial composite side was lower than for the control side

References

    1. Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, Maltz M, Manton DJ, Martignon S, Martinez-Mier EA, Pitts NB, Schulte AG, Splieth CH, Tenuta LMA, Ferreira Zandona A, Nyvad B. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and Cardiology Research Group of IADR. Caries Res. 2020;54(1):7–14. doi: 10.1159/000503309.
    1. Mjor IA, Toffenetti F. Secondary caries: a literature review with case reports. Quintessence Int. 2000;31(3):165–179.
    1. Mjor IA. Clinical diagnosis of recurrent caries. J Am Dent Assoc. 2005;136(10):1426–1433. doi: 10.14219/jada.archive.2005.0057.
    1. Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci. 2012;120(6):539–548. doi: 10.1111/eos.12004.
    1. Maupome G, Sheiham A. Criteria for restoration replacement and restoration life-span estimates in an educational environment. J Oral Rehabil. 1998;25(12):896–901. doi: 10.1046/j.1365-2842.1998.00328.x.
    1. Ersen KA, Gurbuz O, Ozcan M. Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin Oral Investig. 2020;24(5):1687–1693. doi: 10.1007/s00784-019-03025-5.
    1. Kruly PC, Giannini M, Pascotto RC, Tokubo LM, Suga USG, Marques ACR, Terada RSS. Meta-analysis of the clinical behavior of posterior direct resin restorations: low polymerization shrinkage resin in comparison to methacrylate composite resin. PLoS One. 2018;13(2):e0191942. doi: 10.1371/journal.pone.0191942.
    1. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81. doi: 10.1016/j.dental.2015.10.007.
    1. Ferracane JL. Models of caries formation around dental composite restorations. J Dent Res. 2017;96(4):364–371. doi: 10.1177/0022034516683395.
    1. Benelli E, Serra M, Rodrigues AJ, Cury J. In situ anticariogenic potential of glass ionomer cement. Caries Res. 1993;27(4):280–284. doi: 10.1159/000261551.
    1. Gorton J, Featherstone JD. In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2003;123(1):10–14. doi: 10.1067/mod.2003.47.
    1. Hara AT, Turssi CP, Ando M, Gonzalez-Cabezas C, Zero DT, Rodrigues AL, Jr, Serra MC, Cury JA. Influence of fluoride-releasing restorative material on root dentine secondary caries in situ. Caries Res. 2006;40(5):435–439. doi: 10.1159/000094290.
    1. Dijkman G, Arends J. Secondary caries in situ around fluoride-releasing light-curing composites: a quantitative model investigation on four materials with a fluoride content between 0 and 26 vol. Caries Res. 1992;26(5):351–357. doi: 10.1159/000261467.
    1. Chatzistavrou X, Fenno JC, Faulk D, Badylak S, Kasuga T, Boccaccini AR, Papagerakis P. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater. 2014;10(8):3723–3732. doi: 10.1016/j.actbio.2014.04.030.
    1. Chatzistavrou X, Lefkelidou A, Papadopoulou L, Pavlidou E, Paraskevopoulos KM, Fenno JC, Flannagan S, Gonzalez-Cabezas C, Kotsanos N, Papagerakis P. Bactericidal and bioactive dental composites. Front Physiol. 2018;9:103. doi: 10.3389/fphys.2018.00103.
    1. Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006;27(21):3995–4002. doi: 10.1016/j.biomaterials.2006.03.003.
    1. Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials. 2008;29(31):4157–4163. doi: 10.1016/j.biomaterials.2008.07.003.
    1. Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethylenimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A. 2010;107(51):22038–22043. doi: 10.1073/pnas.1010341107.
    1. Beyth N, Yudovin-Fearber I, Domb AJ, Weiss EI. Long-term antibacterial surface properties of composite resin incorporating polyethylenimine nanoparticles. Quintessence Int. 2010;41(10):827–835.
    1. Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, Boccaccini AR, Papagerakis P. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl. 2015;52:267–272. doi: 10.1016/j.msec.2015.03.062.
    1. Gou YP, Meghil MM, Pucci CR, Breschi L, Pashley DH, Cutler CW, Niu LN, Li JY, Tay FR (2018) Optimizing resin-dentin bond stability using a bioactive adhesive with concomitant antibacterial properties and anti-proteolytic activities. Acta Biomater. 10.1016/j.actbio.2018.06.008
    1. Zaltsman N, Ionescu AC, Weiss EI, Brambilla E, Beyth S, Beyth N. Surface-modified nanoparticles as anti-biofilm filler for dental polymers. PLoS One. 2017;12(12):e0189397. doi: 10.1371/journal.pone.0189397.
    1. Atar-Froyman L, Sharon A, Weiss EI, Houri-Haddad Y, Kesler-Shvero D, Domb AJ, Pilo R, Beyth N. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials. Biomaterials. 2015;46:141–148. doi: 10.1016/j.biomaterials.2014.12.047.
    1. Shvero DK, Zatlsman N, Hazan R, Weiss EI, Beyth N. Characterisation of the antibacterial effect of polyethylenimine nanoparticles in relation to particle distribution in resin composite. J Dent. 2015;43(2):287–294. doi: 10.1016/j.jdent.2014.05.003.
    1. Beyth S, Polak D, Milgrom C, Weiss EI, Matanis S, Beyth N. Antibacterial activity of bone cement containing quaternary ammonium polyethylenimine nanoparticles. J Antimicrob Chemother. 2014;69(3):854–855. doi: 10.1093/jac/dkt441.
    1. Featherstone JD, ten Cate JM, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385–391. doi: 10.1159/000260692.
    1. Featherstone JDB, Alston P, Chaffee BW, Rechmann P. Caries Management by Risk Assessment (CAMBRA): an update for use in clinical practice for patients aged 6 through adult. J Calif Dent Assoc. 2019;47(1):25–36.
    1. Rechmann P, Chaffee BW, Rechmann BMT, Featherstone JDB. Changes in caries risk in a practice-based randomized controlled trial. Adv Dent Res. 2018;29(1):15–23. doi: 10.1177/0022034517737022.
    1. Clasen A, Ogaard B. Experimental intra-oral caries models in fluoride research. Acta Odontol Scand. 1999;57(6):334–341. doi: 10.1080/000163599428580.
    1. Zero D. In situ caries models. Adv Dent Res. 1995;9(3):214–230. doi: 10.1177/08959374950090030501.
    1. Stookey G, Schemehorn B, Cheetham B, Wood G, Walton G. In situ fluoride uptake from fluoride dentifrices by carious enamel. J Dent Res. 1985;64(6):900–903. doi: 10.1177/00220345850640060801.
    1. Raven S, Schafer F, Duckworth R, Gilbert R, Parr T. Comparison between evaluation methods for the anti-caries efficacy of monofluorophosphate-containing dentifrices. Caries Res. 1991;25(2):130–137. doi: 10.1159/000261355.
    1. Stephen K, Damato F, Strang R (1992) An in situ enamel section model for assessment of enamel re/demineralization potential. J Dent Res 71 Spec No:856-859
    1. Mellberg J, Petrou I, Grote N. A study of the ability of an in situ remineralization model to differentiate between the effects of two fluoride dentifrices that produced significantly different clinical caries results. J Dent Res. 1992;71(5):1169–1172. doi: 10.1177/00220345920710050801.
    1. Gaffar A, Blake-Haskins J, Mellberg J. In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int Dent J. 1993;43(1 Suppl 1):81–88.
    1. Wefel J, Jensen M, Triolo P, Faller R, Hogan M, Bowman W. De/remineralization from sodium fluoride dentifrices. Am J Dent. 1995;8(4):217–220.
    1. Wefel JS, Stanford CM, Ament DK, Hogan MM, Harless JD, Pfarrer AM, Ramsey LL, Leusch MS, Biesbrock AR. In situ evaluation of sodium hexametaphosphate-containing dentifrices. Caries Res. 2002;36(2):122–128. doi: 10.1159/000057870.
    1. Chow L, Takagi S, Carey C, Sieck B. Remineralization effects of a two-solution fluoride mouthrinse: an in situ study. J Dent Res. 2000;79(4):991–995. doi: 10.1177/00220345000790041601.
    1. van Strijp A, van Steenbergen T, ten Cate J. Effects of chlorhexidine on the bacterial colonization and degradation of dentin and completely demineralized dentin in situ. Eur J Oral Sci. 1997;105(1):27–35. doi: 10.1111/j.1600-0722.1997.tb00177.x.
    1. Huizinga E, Arends J. The effect of an antimicrobial releasing varnish on root demineralisation in situ. The influence of the demineralisation period. J Biol Buccale. 1991;19(1):29–33.
    1. Ogaard B, Rolla G, Ruben J, Arends J. Relative cariostatic effects of KOH-soluble and KOH-insoluble fluoride in situ. J Dent Res. 1990;69(8):1505–1507. doi: 10.1177/00220345900690081101.
    1. Bottenberg P, Cleymaet R, Rohrkasten K, Lampert F. Microhardness changes in surface enamel after application of bioadhesive fluoride tablets in situ. Clin Oral Investig. 2000;4(3):153–156. doi: 10.1007/s007840000076.
    1. Doherty UB, Benson PE, Higham SM. Fluoride-releasing elastomeric ligatures assessed with the in situ caries model. Eur J Orthod. 2002;24(4):371–378. doi: 10.1093/ejo/24.4.371.
    1. Cai F, Shen P, Morgan M, Reynolds E. Remineralization of enamel subsurface lesions in situ by sugar-free lozenges containing casein phosphopeptide-amorphous calcium phosphate. Aust Dent J. 2003;48(4):240–243. doi: 10.1111/j.1834-7819.2003.tb00037.x.
    1. Jensen OE, Billings RJ, Featherstone JD. Clinical evaluation of Fluoroshield pit and fissure sealant. Clin Prev Dent. 1990;12(4):24–27.
    1. Featherstone J, Zero D (1992) An in situ model for simultaneous assessment of inhibition of demineralization and enhancement of remineralization. J Dent Res 71 Spec No:804-810
    1. Ogaard B, Rolla G (1992) The in vivo orthodontic banding model for vital teeth and the in situ orthodontic banding model for hard-tissue slabs. J Dent Res 71 Spec No:832-835
    1. Benson P, Pender N, Higham S. An in situ caries model to study demineralisation during fixed orthodontics. Clin Orthod Res. 1999;2(3):143–153. doi: 10.1111/ocr.1999.2.3.143.
    1. Dunipace A, Hall A, Kelly S, Beiswanger A, Fischer G, Lukantsova L, Eckert G, Stookey G. An in situ interproximal model for studying the effect of fluoride on enamel. Caries Res. 1997;31(1):60–70. doi: 10.1159/000262376.
    1. Hollanders ACC, Kuper NK, Maske TT, Huysmans M. Secondary caries in situ models: a systematic review. Caries Res. 2018;52(6):454–462. doi: 10.1159/000487200.
    1. Hals E, Andreassen BH, Bie T. Histopathology of natural caries around silver amalgam fillings. Caries Res. 1974;8(4):343–358. doi: 10.1159/000260123.
    1. Hals E, Nernaes A. Histopathology of in vitro caries developing around silver amalgam fillings. Caries Res. 1971;5(1):58–77. doi: 10.1159/000259733.
    1. Fontana M, Dunipace AJ, Gregory RL, Noblitt TW, Li Y, Park KK, Stookey GK. An in vitro microbial model for studying secondary caries formation. Caries Res. 1996;30(2):112–118. doi: 10.1159/000262146.
    1. Diercke K, Lussi A, Kersten T, Seemann R. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model. Clin Oral Investig. 2009;13(4):439–444. doi: 10.1007/s00784-009-0250-z.
    1. Kuper NK, Montagner AF, van de Sande FH, Bronkhorst EM, Opdam NJ, Huysmans MC (2015) Secondary caries development in in situ gaps next to composite and amalgam. Caries Res 49 (5):557-563. 10.1159/000438728
    1. Kuper NK, Opdam NJ, Ruben JL, de Soet JJ, Cenci MS, Bronkhorst EM, Huysmans MC (2014) Gap size and wall lesion development next to composite. J Dent Res 93 (7 Suppl):108S-113S. 10.1177/0022034514534262
    1. Maske TT, Hollanders ACC, Kuper NK, Bronkhorst EM, Cenci MS, Huysmans M. A threshold gap size for in situ secondary caries lesion development. J Dent. 2019;80:36–40. doi: 10.1016/j.jdent.2018.10.014.
    1. Nassar HM, Gonzalez-Cabezas C. Effect of gap geometry on secondary caries wall lesion development. Caries Res. 2011;45(4):346–352. doi: 10.1159/000329384.
    1. Featherstone JD, Barrett-Vespone NA, Fried D, Kantorowitz Z, Seka W. CO2 laser inhibitor of artificial caries-like lesion progression in dental enamel. J Dent Res. 1998;77(6):1397–1403. doi: 10.1177/00220345980770060401.
    1. Featherstone JD, Glena R, Shariati M, Shields CP (1990) Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J Dent Res 69 Spec No:620-625; discussion 634-626
    1. Toda S, Featherstone JD. Effects of fluoride dentifrices on enamel lesion formation. J Dent Res. 2008;87(3):224–227. doi: 10.1177/154405910808700303.
    1. Chaves CA, Machado AL, Vergani CE, de Souza RF, Giampaolo ET. Cytotoxicity of denture base and hard chairside reline materials: a systematic review. J Prosthet Dent. 2012;107(2):114–127. doi: 10.1016/S0022-3913(12)60037-7.
    1. Ica RB, Ozturk F, Ates B, Malkoc MA, Kelestemur U. Level of residual monomer released from orthodontic acrylic materials. Angle Orthod. 2014;84(5):862–867. doi: 10.2319/060713-435.1.
    1. Nik TH, Shahroudi AS, Eraghihzadeh Z, Aghajani F. Comparison of residual monomer loss from cold-cure orthodontic acrylic resins processed by different polymerization techniques. J Orthod. 2014;41(1):30–37. doi: 10.1179/1465313313Y.0000000078.
    1. Yu J, Huang X, Zhou X, Han Q, Zhou W, Liang J, Xu HHK, Ren B, Peng X, Weir MD, Li M, Cheng L. Anti-caries effect of resin infiltrant modified by quaternary ammonium monomers. J Dent. 2020;97:103355. doi: 10.1016/j.jdent.2020.103355.
    1. Maia AC, Mangabeira A, Vieira R, Neves AA, Lopes RT, Pires TM, Viana GM, Cabral LM, Cavalcante LM, Portela MB. Experimental composites containing quaternary ammonium methacrylates reduce demineralization at enamel-restoration margins after cariogenic challenge. Dent Mater. 2019;35(8):e175–e183. doi: 10.1016/j.dental.2019.05.021.
    1. Vidal ML, Rego GF, Viana GM, Cabral LM, Souza JPB, Silikas N, Schneider LF, Cavalcante LM. Physical and chemical properties of model composites containing quaternary ammonium methacrylates. Dent Mater. 2018;34(1):143–151. doi: 10.1016/j.dental.2017.09.020.
    1. Tobias RS. Antibacterial properties of dental restorative materials: a review. Int Endod J. 1988;21(2):155–160. doi: 10.1111/j.1365-2591.1988.tb00969.x.
    1. Weiss EI, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol. 1996;12(4):179–184. doi: 10.1111/j.1600-9657.1996.tb00511.x.
    1. Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: an in vitro study. Eur J Dent. 2015;9(2):240–245. doi: 10.4103/1305-7456.156837.

Source: PubMed

3
Subscribe