Estrogen Modulates Specific Life and Death Signals Induced by LH and hCG in Human Primary Granulosa Cells In Vitro

Livio Casarini, Laura Riccetti, Francesco De Pascali, Lisa Gilioli, Marco Marino, Eugenia Vecchi, Daria Morini, Alessia Nicoli, Giovanni Battista La Sala, Manuela Simoni, Livio Casarini, Laura Riccetti, Francesco De Pascali, Lisa Gilioli, Marco Marino, Eugenia Vecchi, Daria Morini, Alessia Nicoli, Giovanni Battista La Sala, Manuela Simoni

Abstract

Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are glycoprotein hormones used for assisted reproduction acting on the same receptor (LHCGR) and mediating different intracellular signaling. We evaluated the pro- and anti-apoptotic effect of 100 pM LH or hCG, in the presence or in the absence of 200 pg/mL 17β-estradiol, in long-term, serum-starved human primary granulosa cells (hGLC) and a transfected granulosa cell line overexpressing LHCGR (hGL5/LHCGR). To this purpose, phospho-extracellular-regulated kinase 1/2 (pERK1/2), protein kinase B (pAKT), cAMP-responsive element binding protein (pCREB) activation and procaspase 3 cleavage were evaluated over three days by Western blotting, along with the expression of target genes by real-time PCR and cell viability by colorimetric assay. We found that LH induced predominant pERK1/2 and pAKT activation STARD1, CCND2 and anti-apoptotic XIAP gene expression, while hCG mediated more potent CREB phosphorylation, expression of CYP19A1 and procaspase 3 cleavage than LH. Cell treatment by LH is accompanied by increased (serum-starved) cell viability, while hCG decreased the number of viable cells. The hCG-specific, pro-apoptotic effect was blocked by a physiological dose of 17β-estradiol, resulting in pAKT activation, lack of procaspase 3 cleavage and increased cell viability. These results confirm that relatively high levels of steroidogenic pathway activation are linked to pro-apoptotic signals in vitro, which may be counteracted by other factors, i.e., estrogens.

Keywords: LH; apoptosis; gonadotropins; granulosa; hCG.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Comparison of luteinizing hormone (LH)- and human chorionic gonadotropin (hCG)-induced extracellular-regulated kinase 1/2 (ERK1/2), protein kinase B (AKT) and cAMP-responsive element binding protein (CREB) phosphorylation over 72 h, in human primary granulosa lutein cells (hGLC). (A) Evaluation of pERK1/2, pAKT and pCREB activation by Western blotting. Total ERK served as loading control (images representative of four independent experiments); (BD) Semi-quantification of pERK1/2, pAKT and pCREB Western blotting signals. § = significantly different to unstimulated (control) at the same time-point; * = significant difference of LH versus hCG; two-way ANOVA and Bonferroni post-test (p < 0.05; means ± standard deviation (SD); n = 4).
Figure 2
Figure 2
Evaluation of LH- and hCG-induced procaspase 3 cleavage over 72 h, in hGLC. (A) Evaluation of procaspase 3 by Western blotting. β-actin was the loading control (images representative of four independent experiments); (B) Semi-quantification of procaspase 3 Western blotting signals. § = significantly different versus unstimulated (control) samples collected at the same time-point; two-way ANOVA and Bonferroni post-test (p < 0.05; means ± SD; n = 4).
Figure 3
Figure 3
Time-course (0–72 h) expression analysis of LH- and hCG-target genes by real-time PCR. Values were normalized over the expression of RPS7 housekeeping gene. (A) CCND2 gene encoding for the cyclin D2; (B) CASP3 gene encoding for the procaspase 3; (C) TP53 gene encoding for the p53 tumor-suppressor protein; (D) XIAP gene encoding for the X-linked inhibitor of apoptosis factor; (E) STARD1 gene encoding for the StAR enzyme; (F) CYP19A1 gene encoding for the aromatase enzyme. § = significantly different to unstimulated (control) at the same time-point; * = significant difference of LH versus hCG; two-way ANOVA and Bonferroni post-test (p < 0.05; means ± SD; n = 3).
Figure 4
Figure 4
Analysis of LH- and hCG-treated (0–72 h), serum-starved hGLC viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells maintained in the absence of gonadotropin served as controls. (A) Directly measured absorbance values; (B) Cell viability values expressed as increase or decrease over basal levels. § = significantly different to unstimulated (control) at the same time-point; * = significant difference of LH versus hCG; two-way ANOVA and Bonferroni post-test (p < 0.05; means ± SD; n = 10).
Figure 5
Figure 5
Comparison of pAKT activation and procaspase 3 cleavage over 72 h, in hGLC maintained under LH- or hCG-treatment in the presence of 17β-estradiol. (A) Evaluation of pAKT and procaspase 3 by Western blotting in cells treated 0–3 days by LH or hCG together with the estrogen. Unstimulated cells were maintained in the presence of 17β-estradiol too. Total ERK and β-actin served as loading controls (images representative of three independent experiments); (B,C) Semi-quantification of pAKT (B) and procaspase 3 (C) Western blotting signals. Data from samples maintained in the presence of 17β-estradiol are represented by bars, while circles were samples in the absence of the estrogens extracted from Figure 1 and Figure 2. ¤ = significantly different to unstimulated (control) at the time-point 0; two-way ANOVA and Bonferroni post-test (p < 0.05; means ± SD; n = 3).
Figure 6
Figure 6
Analysis of hGLC viability by the MTT assay. Cells were maintained under LH or hCG treatment in the presence of 17β-estradiol. Cells maintained in the absence of gonadotropin served as controls. Data from samples maintained in the presence of 17β-estradiol are represented by bars, while circles were samples in the absence of the estrogens extracted from Figure 1 and Figure 2. (A) Directly measured absorbance values; (B) Cell viability values expressed as increase or decrease over basal levels. ¤ = significantly different versus same gonadotropin stimulation, at the same time-point; (two-way ANOVA and Bonferroni post-test; p < 0.05; means ± SD; n = 10).

References

    1. Simoni M., Gromoll J., Nieschlag E. The follicle-stimulating hormone receptor: Biochemistry, molecular biology, physiology, and pathophysiology. Endocr. Rev. 1997;18:739–773. doi: 10.1210/er.18.6.739.
    1. Ascoli M., Fanelli F., Segaloff D.L. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr. Rev. 2002;23:141–174. doi: 10.1210/edrv.23.2.0462.
    1. Troppmann B., Kleinau G., Krause G., Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum. Reprod. Update. 2013;19:583–602. doi: 10.1093/humupd/dmt023.
    1. Kossack N., Simoni M., Richter-Unruh A., Themmen A.P.N., Gromoll J. Mutations in a novel, cryptic exon of the luteinizing hormone/chorionic gonadotropin receptor gene cause male pseudohermaphroditism. PLoS Med. 2008;5:e88. doi: 10.1371/journal.pmed.0050088.
    1. Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013.
    1. Reiter E., Lefkowitz R.J. GRKs and β-arrestins: Roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 2006;17:159–165. doi: 10.1016/j.tem.2006.03.008.
    1. Pitcher J.A., Tesmer J.J., Freeman J.L., Capel W.D., Stone W.C., Lefkowitz R.J. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 1999;274:34531–34534. doi: 10.1074/jbc.274.49.34531.
    1. Strungs E.G., Luttrell L.M. Arrestin-dependent activation of ERK and Src family kinases. Handb. Exp. Pharmacol. 2014;219:225–257.
    1. Casarini L., Reiter E., Simoni M. β-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol. Cell. Endocrinol. 2016;437:11–21. doi: 10.1016/j.mce.2016.08.005.
    1. Schiffer Z., Keren-Tal I., Deutsch M., Dantes A., Aharoni D., Weinerb A., Tirosh R., Amsterdam A. Fourier analysis of differential light scattering for the quantitation of FSH response associated with structural changes in immortalized granulosa cells. Mol. Cell. Endocrinol. 1996;118:145–153. doi: 10.1016/0303-7207(96)03774-4.
    1. Zwain I.H., Amato P. cAMP-induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and down-regulation of clusterin. Endocr. Res. 2001;27:233–349. doi: 10.1081/ERC-100107184.
    1. Amsterdam A., Gold R., Hosokawa K., Yoshida Y., Sasson R., Jung Y., Kotsuji F. Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol. Metab. 1999;10:255–262. doi: 10.1016/S1043-2760(99)00164-2.
    1. Amsterdam A., Keren-Tal I., Aharoni D. Cross-talk between cAMP and p53-generated signals in induction of differentiation and apoptosis in steroidogenic granulosa cells. Steroids. 1996;61:252–256. doi: 10.1016/0039-128X(96)00031-1.
    1. Casarini L., Lispi M., Longobardi S., Milosa F., la Marca A., Tagliasacchi D., Pignatti E., Simoni M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE. 2012;7:e46682. doi: 10.1371/journal.pone.0046682.
    1. Carvalho C.R.O., Carvalheira J.B.C., Lima M.H.M., Zimmerman S.F., Caperuto L.C., Amanso A., Gasparetti A.L., Meneghetti V., Zimmerman L.F., Velloso L.A., et al. Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology. 2003;144:638–647. doi: 10.1210/en.2002-220706.
    1. Casarini L., Riccetti L., de Pascali F., Nicoli A., Tagliavini S., Trenti T., la Sala G.B., Simoni M. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol. Cell. Endocrinol. 2016;422:103–114. doi: 10.1016/j.mce.2015.12.008.
    1. Gupta C., Chapekar T., Chhabra Y., Singh P., Sinha S., Luthra K. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells. Indian J. Med. Res. 2012;135:331–340.
    1. Riccetti L., de Pascali F., Gilioli L., Potì F., Giva L.B., Marino M., Tagliavini S., Trenti T., Fanelli F., Mezzullo M., et al. Human LH and hCG stimulate differently the early signalling pathways but result in equal testosterone synthesis in mouse Leydig cells in vitro. Reprod. Biol. Endocrinol. 2017;15:2. doi: 10.1186/s12958-016-0224-3.
    1. Terranova P.F., Rice V.M. Review: Cytokine involvement in ovarian processes. Am. J. Reprod. Immunol. 1997;37:50–63. doi: 10.1111/j.1600-0897.1997.tb00192.x.
    1. Ben-Ami I., Armon L., Freimann S., Strassburger D., Ron-El R., Amsterdam A. EGF-like growth factors as LH mediators in the human corpus luteum. Hum. Reprod. 2008;24:176–184. doi: 10.1093/humrep/den359.
    1. Britt K.L., Findlay J.K. Estrogen actions in the ovary revisited. J. Endocrinol. 2002;175:269–276. doi: 10.1677/joe.0.1750269.
    1. Palter S.F., Tavares A.B., Hourvitz A., Veldhuis J.D., Adashi E.Y. Are estrogens of import to primate/human ovarian folliculogenesis? Endocr. Rev. 2001;22:389–424.
    1. Pavlik R., Wypior G., Hecht S., Papadopoulos P., Kupka M., Thaler C., Wiest I., Pestka A., Friese K., Jeschke U. Induction of G protein-coupled estrogen receptor (GPER) and nuclear steroid hormone receptors by gonadotropins in human granulosa cells. Histochem. Cell Biol. 2011;136:289–299. doi: 10.1007/s00418-011-0846-7.
    1. Heublein S., Mayr D., Friese K., Jarrin-Franco M., Lenhard M., Mayerhofer A., Jeschke U. The G-protein-coupled estrogen receptor (GPER/GPR30) in ovarian granulosa cell tumors. Int. J. Mol. Sci. 2014;15:15161–15172. doi: 10.3390/ijms150915161.
    1. Yu T., Liu M., Luo H., Wu C., Tang X., Tang S., Hu P., Yan Y., Wang Z., Tu G. GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J. Steroid Biochem. Mol. 2014;143:392–403. doi: 10.1016/j.jsbmb.2014.05.003.
    1. Zavatti M., Guida M., Maraldi T., Beretti F., Bertoni L., la Sala G.B., de Pol A. Estrogen receptor signaling in the ferutinin-induced osteoblastic differentiation of human amniotic fluid stem cells. Life Sci. 2016;164:15–22. doi: 10.1016/j.lfs.2016.09.005.
    1. Zhu P., Liao L.-Y., Zhao T.-T., Mo X.-M., Chen G.G., Liu Z.-M. GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Mol. Cell. Endocrinol. 2017;442:68–80.
    1. Casarini L., Moriondo V., Marino M., Adversi F., Capodanno F., Grisolia C., la Marca A., la Sala G.B., Simoni M. FSHR polymorphism p.N680S mediates different responses to FSH in vitro. Mol. Cell. Endocrinol. 2014;393:83–91. doi: 10.1016/j.mce.2014.06.013.
    1. Drummond A.E., Findlay J.K. The role of estrogen in folliculogenesis. Mol. Cell. Endocrinol. 1999;151:57–64. doi: 10.1016/S0303-7207(99)00038-6.
    1. Grzesik P., Kreuchwig A., Rutz C., Furkert J., Wiesner B., Schuelein R., Kleinau G., Gromoll J., Krause G. Differences in signal activation by LH and hCG are mediated by the LH/CG Receptor’s extracellular hinge region. Front. Endocrinol. 2015;6:140. doi: 10.3389/fendo.2015.00140.
    1. Huhtaniemi I.T., Catt K.J. Differential binding affinities of rat testis luteinizing hormone (LH) receptors for human chorionic gonadotropin, human LH, and ovine LH. Endocrinology. 1981;108:1931–1938. doi: 10.1210/endo-108-5-1931.
    1. Gromoll J., Eiholzer U., Nieschlag E., Simoni M. Male hypogonadism caused by homozygous deletion of exon 10 of the luteinizing hormone (LH) receptor: Differential action of human chorionic gonadotropin and LH. J. Clin. Endocrinol. Metab. 2000;85:2281–2286. doi: 10.1210/jcem.85.6.6636.
    1. Gromoll J., Wistuba J., Terwort N., Godmann M., Müller T., Simoni M. A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the New World Monkey (Platyrrhini) lineage. Biol. Reprod. 2003;69:75–80. doi: 10.1095/biolreprod.102.014902.
    1. Amsterdam A., Dantes A., Hosokawa K., Schere-Levy C.P., Kotsuji F., Aharoni D. Steroid regulation during apoptosis of ovarian follicular cells. Steroids. 1998;63:314–318. doi: 10.1016/S0039-128X(98)00016-6.
    1. Amsterdam A., Keren-Tal I., Aharoni D., Dantes A., Land-Bracha A., Rimon E., Sasson R., Hirsh L. Steroidogenesis and apoptosis in the mammalian ovary. Steroids. 2003;68:861–867. doi: 10.1016/j.steroids.2003.09.003.
    1. Jiang J.-Y., Cheung C.K.M., Wang Y., Tsang B.K. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front. Biosci. 2003;8:d222–d237.
    1. Tajima K., Hosokawa K., Yoshida Y., Dantes A., Sasson R., Kotsuji F., Amsterdam A. Establishment of FSH-responsive cell lines by transfection of pre-ovulatory human granulosa cells with mutated p53 (p53val135) and Ha-ras genes. Mol. Hum. Reprod. 2002;8:48–57. doi: 10.1093/molehr/8.1.48.
    1. Hunzicker-Dunn M.E., Lopez-Biladeau B., Law N.C., Fiedler S.E., Carr D.W., Maizels E.T. PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc. Natl. Acad. Sci. USA. 2012;109:E2979–E2988. doi: 10.1073/pnas.1205661109.
    1. Muniz L.C., Yehia G., Mémin E., Ratnakar P.V.A.L., Molina C.A. Transcriptional Regulation of Cyclin D2 by the PKA Pathway and Inducible cAMP Early Repressor in Granulosa Cells. Biol. Reprod. 2006;75:279–288. doi: 10.1095/biolreprod.105.049486.
    1. Kayampilly P.P., Menon K.M.J. Inhibition of extracellular signal-regulated protein kinase-2 phosphorylation by dihydrotestosterone reduces follicle-stimulating hormone-mediated cyclin D2 messenger ribonucleic acid expression in rat granulosa cells. Endocrinology. 2004;145:1786–1793. doi: 10.1210/en.2003-1029.
    1. Wang Y., Hao X., Yang J., Li J., Zhang M. CREB activity is required for luteinizing hormone-induced the expression of EGF-like factors. Mol. Reprod. Dev. 2016;83:1116–1127. doi: 10.1002/mrd.22753.
    1. Amsterdam A., Hanoch T., Dantes A., Tajima K., Strauss J.F., Seger R. Mechanisms of gonadotropin desensitization. Mol. Cell. Endocrinol. 2002;187:69–74. doi: 10.1016/S0303-7207(01)00701-8.
    1. Berridge M.V., Tan A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993;303:474–482. doi: 10.1006/abbi.1993.1311.
    1. Soto E.A., Kliman H.J., Strauss J.F., Paavola L.G. Gonadotropins and cyclic adenosine 3′,5′-monophosphate (cAMP) alter the morphology of cultured human granulosa cells. Biol. Reprod. 1986;34:559–569. doi: 10.1095/biolreprod34.3.559.
    1. Billig H., Chun S.Y., Eisenhauer K., Hsueh A.J. Gonadal cell apoptosis: Hormone-regulated cell demise. Hum. Reprod. Update. 1996;2:103–117. doi: 10.1093/humupd/2.2.103.
    1. Quirk S.M., Cowan R.G., Harman R.M. The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle. J. Endocr. 2006;189:441–453. doi: 10.1677/joe.1.06549.
    1. Brown C., LaRocca J., Pietruska J., Ota M., Anderson L., Duncan Smith S., Weston P., Rasoulpour T., Hixon M.L. Subfertility caused by altered follicular development and oocyte growth in female mice lacking PKBα/Akt11. Biol. Reprod. 2010;82:246–256. doi: 10.1095/biolreprod.109.077925.
    1. Tong C., Feng X., Chen J., Qi X., Zhou L., Shi S., KC K., Stanley J.L., Baker P.N., Zhang H. G protein-coupled receptor 30 regulates trophoblast invasion and its deficiency is associated with preeclampsia. J. Hypertens. 2016;34:710–718. doi: 10.1097/HJH.0000000000000844.
    1. Chen C., Wang Y., Wang S., Liu Y., Zhang J., Xu Y., Zhang Z., Bao W., Wu S. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1. Int. J. Oncol. 2017;50:942–952.
    1. Nordhoff V., Sonntag B., Von Tils D., Götte M., Schüring A.N., Gromoll J., Redmann K., Casarini L., Simoni M. Effects of the FSH receptor gene polymorphism p.N680S on cAMP and steroid production in cultured primary human granulosa cells. Reprod. Biomed. Online. 2011;23:196–203. doi: 10.1016/j.rbmo.2011.04.009.
    1. Rainey W.H., Sawetawan C., Shay J.W., Michael M.D., Mathis J.M., Kutteh W., Byrd W., Carr B.R. Transformation of human granulosa cells with the E6 and E7 regions of human papillomavirus. J. Clin. Endocrinol. Metab. 1994;78:705–710.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.
    1. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4.

Source: PubMed

3
Subscribe