Immunogenicity and Efficacy of Insulin Glargine Biosimilar Ezelin versus Originator Insulin Glargine in Patients with Type 2 Diabetes

Tri Juli Edi Tarigan, Adisti Dwijayanti, Susie Setyowati, Melva Louisa, Tri Juli Edi Tarigan, Adisti Dwijayanti, Susie Setyowati, Melva Louisa

Abstract

Purpose: To compare the immunogenicity and efficacy of insulin glargine biosimilar Ezelin (EZL) versus originator insulin glargine Lantus (LAN) as a reference basal insulin in patients with type 2 diabetes (T2D).

Patients and methods: This was a randomized, multicenter, open-label, 24-week study in insulin-naïve patients with T2D, with HbA1c of >7.0%. We randomly assigned 133 eligible patients to receive either EZL or LAN. Baseline characteristics, including insulin autoantibody (IAA), zinc transporter 8 (ZnT8) antibody, HbA1C, fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (2hPPG), AST, ALT, BUN, eGFR, and oral antidiabetic drugs, were obtained before starting insulin treatment. After starting treatment, insulin dose was titrated to achieve FPG target along with oral antidiabetic drugs. Patients were given home glucometer and assisted to record plasma glucose measurement and adverse event (AE). Every month, patients came to the diabetes clinic and performed a regular physical examination and intensifying treatment if needed. Out of the 133 randomized patients, only 122 completed the study and can be examined for their IAA and ZnT8 after 6 months of treatment. The study was registered in clinicaltrials.gov, NCT03352674.

Results: There is a similar proportion of patients with changes of IAA from baseline: 1 out of 58 (1.7%) patients receiving EZL versus 1 out of 64 (1.6%) patients receiving LAN (p = 1.000). One patient in the EZL group (1.7%) versus none in the LAN group experienced a change of ZnT8 antibody from baseline. Similar glucose control in EZL versus LAN was determined by the change in HbA1c, FPG, and 2hPPG (-2.0%, -67.46 mg/dL, and -76.51 mg/dL in the EZL group versus -1.7%, -58.11 mg/dL, and -70.03 mg/dL in the LAN group). There were six events of documented hypoglycemia in the EZL group versus five events in the LAN group. No patients experienced diabetic ketoacidosis during the study.

Conclusion: Overall, insulin glargine biosimilar EZL and originator insulin glargine LAN have shown a similar immunogenicity profile, as well as efficacy in providing glucose control and safety findings in T2D populations.

Keywords: biosimilar; hyperglycemia; insulin autoantibody; zinc transporter 8 antibody.

Conflict of interest statement

The authors declare no potential conflict of interest relevant to this study.

© 2021 Tarigan et al.

Figures

Figure 1
Figure 1
The flow of patients throughout the study.
Figure 2
Figure 2
(A) HbA1c, (B) fasting plasma glucose and (C) 2-hour postprandial glucose at baseline, after 12-weeks and 24-weeks of treatment.
Figure 3
Figure 3
Proportions of patients achieving HbA1c ≤ 7.0% and HbA1c >7 after 24-week treatment with EZL or LAN.

References

    1. Brunton S. Pathophysiology of Type 2 Diabetes: the Evolution of Our Understanding.. J Fam Pract. 2016;65(4 Suppl):supp_az_0416.
    1. Shah VN, Moser EG, Blau A, Dhingra M, Garg SK. The future of basal insulin. Diabetes Technol Ther. 2013;15(9):727–732. doi:10.1089/dia.2013.0228
    1. Hemraj F, Garces K. Insulin glargine for type 2 diabetes. Issues Emerg Health Technol. 2004;59:1–4.
    1. Schreiber SA. Insulin glargine in type 2 diabetes in everyday clinical practice: 7 years experience. Diab Obes Metab. 2008;10(Suppl s2):24–34. doi:10.1111/j.1463-1326.2008.00842.x
    1. Owens DR. Clinical evidence for the earlier initiation of insulin therapy in type 2 diabetes. Diabetes Tech Ther. 2013;15(9):776–785. doi:10.1089/dia.2013.0081
    1. Xu Y, Sun L, Anderson M, et al. Insulin glargine and its two active metabolites: A sensitive (16 pM) and robust simultaneous hybrid assay coupling immunoaffinity purification with LC–MS/MS to support biosimilar clinical studies. J Chromatogr B. 2017;1063:50–59. doi:10.1016/j.jchromb.2017.08.018
    1. Heinemann L, Home PD, Hompesch M. Biosimilar insulins: guidance for data interpretation by clinicians and users. Diab Obes Metab. 2015;17(10):911–918. doi:10.1111/dom.12491
    1. Yamada T, Kamata R, Ishinohachi K, et al. Biosimilar vs originator insulins: systematic review and meta-analysis. Diab Obes Metab. 2018;20(7):1787–1792. doi:10.1111/dom.13291
    1. Li HQ, Lu CF, Wang J, et al. A comparison of clinical efficacy and economic value in Basalin- and Lantus-treated patients with type 2 diabetes using continuous glucose monitoring system. J Endocrinol Invest. 2018;41(2):179–184. doi:10.1007/s40618-017-0712-0
    1. Tieu C, Lucas EJ, DePaola M, Rosman L, Alexander GC, Sethi JK. Efficacy and safety of biosimilar insulins compared to their reference products: A systematic review. PLoS One. 2018;13(4):e0195012. doi:10.1371/journal.pone.0195012
    1. Pineda C, Castaneda Hernandez G, Jacobs IA, Alvarez DF, Carini C. Assessing the Immunogenicity of Biopharmaceuticals. BioDrugs. 2016;30(3):195–206. doi:10.1007/s40259-016-0174-5
    1. DeVries JH, Gough SC, Kiljanski J, Heinemann L. Biosimilar insulins: a European perspective. Diab Obes Metab. 2015;17(5):445–451. doi:10.1111/dom.12410
    1. Pollom RK, Ilag LL, Lacaya LB, Morwick TM, Ortiz Carrasquillo R. Lilly Insulin Glargine Versus Lantus® in Insulin-Naïve and Insulin-Treated Adults with Type 2 Diabetes: A Randomized, Controlled Trial (ELEMENT 5). Diabetes Therapy. 2019;10(1):189–203. doi:10.1007/s13300-018-0549-3
    1. Pollom RK, Costigan T, Lacaya LB, Ilag LL, Hollander PA. Similar Efficacy and Safety of Basaglar((R)) and Lantus((R)) in Patients with Type 2 Diabetes in Age Groups (< 65 Years, >/= 65 Years): A Post Hoc Analysis from the ELEMENT-2 Study. Diab Ther. 2018;9(2):827–837.
    1. Blevins TC, Barve A, Sun B, et al. Efficacy and safety of MYL-1501D versus insulin glargine in patients with type 2 diabetes after 24 weeks: results of the Phase III INSTRIDE 2 study. Diab Obes Metab. 2019;21(1):129–135. doi:10.1111/dom.13495
    1. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diab Care. 2009;32(1):193–203. doi:10.2337/dc08-9025
    1. Rosenstock J, Hollander P, Bhargava A, et al. Similar efficacy and safety of LY2963016 insulin glargine and insulin glargine (Lantus(R)) in patients with type 2 diabetes who were insulin-naive or previously treated with insulin glargine: a randomized, double-blind controlled trial (the ELEMENT 2 study). Diab Obes Metab. 2015;17(8):734–741.
    1. Wenzlau JM, Frisch LM, Hutton JC, et al. Changes in Zinc Transporter 8 Autoantibodies Following Type 1 Diabetes Onset: the Type 1 Diabetes Genetics Consortium Autoantibody Workshop. Diab Care. 2015;38(Suppl Supplement 2):S14–S20. doi:10.2337/dcs15-2004
    1. Wenzlau JM, Hutton JC. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr Diabetes Rep. 2013;13(5):608–615. doi:10.1007/s11892-013-0405-9
    1. Fineberg SE, Kawabata TT, Finco-Kent D, et al. Immunological responses to exogenous insulin. Endocr Rev. 2007;28(6):625–652.
    1. Hu X, Chen F. Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients. Endocr Connect. 2018;7(1):R47–R55. doi:10.1530/EC-17-0309
    1. Ismail AA. The insulin autoimmune syndrome (IAS) as a cause of hypoglycaemia: an update on the pathophysiology, biochemical investigations and diagnosis. Clin Chem Lab Med. 2016;54(11):1715–1724. doi:10.1515/cclm-2015-1255
    1. Banerji MA, Baron MA, Gao L, Blonde L. Influence of baseline glycemia on outcomes with insulin glargine use in patients uncontrolled on oral agents. Postgrad Med. 2014;126(3):111–125. doi:10.3810/pgm.2014.05.2761
    1. Clements JN, Threatt T, Ward E, Shealy KM. Clinical Pharmacokinetics and Pharmacodynamics of Insulin Glargine 300 U/mL. Clin Pharmacokinet. 2017;56(5):449–458. doi:10.1007/s40262-016-0464-6
    1. Czupryniak L, Barkai L, Bolgarska S, et al. Self-Monitoring of Blood Glucose in Diabetes: from Evidence to Clinical Reality in Central and Eastern Europe—Recommendations from the International Central-Eastern European Expert Group. Diabetes Techn Therapeutics. 2014;16(7):460–475. doi:10.1089/dia.2013.0302
    1. Kirk JK, Stegner J. Self-monitoring of blood glucose: practical aspects. J Diabetes Sci Tech. 2010;4(2):435–439. doi:10.1177/193229681000400225
    1. Clar C, Barnard K, Cummins E, Royle P, Waugh N. Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Asses. 2010;14(12):1–140. doi:10.3310/hta14120
    1. American Diabetes Association. 6. Glycemic Targets: standards of Medical Care in Diabetes—2018. Diab Care. 2018;41(Suppl Supplement 1):S55–S64. doi:10.2337/dc18-S006
    1. Song YS, Koo BK, Kim SW, Yi KH, Shin K, Moon MK. Improvement of glycosylated hemoglobin in patients with type 2 diabetes mellitus under insulin treatment by reimbursement for self-monitoring of blood glucose. Diabetes Metab J. 2018;42(1):28–42. doi:10.4093/dmj.2018.42.1.28
    1. Young LA, Buse JB, Weaver MA; Monitor Trial Group. Glucose Self-monitoring in Non–Insulin-Treated Patients With Type 2 Diabetes in Primary Care Settings. JAMA Intern Med. 2017;177(7):920–929. doi:10.1001/jamainternmed.2017.1233
    1. Richardson T, Kerr D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol. 2003;4(10):661–667. doi:10.2165/00128071-200304100-00001
    1. Kreugel G, Keers JC, Kerstens MN, Wolffenbuttel BHR. Randomized trial on the influence of the length of two insulin pen needles on glycemic control and patient preference in obese patients with diabetes. Diabetes Technol Ther. 2011;13(7):737–741. doi:10.1089/dia.2011.0010
    1. Berard L, Cameron B, Woo V. Pen needle preference in a population of Canadians with diabetes: results from a recent patient survey. Can J Diabetes. 2015;39(3):206–209. doi:10.1016/j.jcjd.2014.09.008
    1. Bari B, Corbeil M-A, Farooqui H, et al. Insulin Injection Practices in a Population of Canadians with Diabetes: an Observational Study. Diabetes Ther. 2020;11(11):2595–2609. doi:10.1007/s13300-020-00913-y
    1. Myers AK, Gulati N, Pascarelli B, et al. Perceptions of Insulin Pen Use and Technique in Black and Hispanic/Latino Patients with Type 2 Diabetes: a Qualitative Study. J Racial Ethnic Health Disparities. 2020;7(5):949–957. doi:10.1007/s40615-020-00718-6
    1. Gorska-Ciebiadaa M, Masierek M, Ciebiadac M. Improved insulin injection technique, treatment satisfaction and glycemic control: results from a large cohort education study. J Clin Transl Endocrinol. 2020;19:1–6.
    1. Upsher R, Allen-Taylor M, Reece I, et al. Experiences of Attending Group Education to Support Insulin Initiation in Type 2 Diabetes: A Qualitative Study. Diabetes Therapy. 2020;11(1):119–132. doi:10.1007/s13300-019-00727-7
    1. Li F, Fu SM, Liu ZP, Liu XR, Hu CJ, Li QF. Injection sites lipohypertrophy among 736 patients with type 2 diabetes of different-grade hospitals. Int J Clin Exp Med. 2016;9(7):13178–13183.
    1. Hermanns N, Ehrmann D, Schall S, Maier B, Haak T, Kulzer B. The effect of an education programme (MEDIAS 2 BSC) of non-intensive insulin treatment regimens for people with Type 2 diabetes: a randomized, multi-centre trial. Diabetic Med. 2017;34(8):1084–1091. doi:10.1111/dme.13346

Source: PubMed

3
Subscribe