Development of the Human Mycobiome over the First Month of Life and across Body Sites

Tonya L Ward, Maria Gloria Dominguez-Bello, Tim Heisel, Gabriel Al-Ghalith, Dan Knights, Cheryl A Gale, Tonya L Ward, Maria Gloria Dominguez-Bello, Tim Heisel, Gabriel Al-Ghalith, Dan Knights, Cheryl A Gale

Abstract

With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life (n = 17) and the anal and vaginal mycobiomes of mothers (n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.

Keywords: ITS2; fungi; infant; microbiome; mycobiome.

Figures

FIG 1
FIG 1
Infant mycobiomes vary by body site. (a) Principal-coordinate analysis of weighted UniFrac distances for infant skin, oral, and anal mycobiomes over the first 30 days of life. Box plots shown along each axis represent the median and interquartile range and indicate the distribution of samples along the given axis. Each point represents a single sample and is colored by body site as follows: skin, yellow (n = 58 samples); oral, teal (n = 56 samples); anal, pink (n = 60 samples). PERMANOVA values, R2 values, and P values are shown. (b and c) The same principal-coordinate analysis colored by the relative abundances of (b) Candida albicans and (c) C. parapsilosis, with anal samples denoted with a solid border. (d and e) Relative abundances of (d) C. albicans and (e) C. parapsilosis within the skin, oral, and anal mycobiomes of infants, as assessed by Wilcoxon rank sum tests with false-discovery-rate correction.
FIG 2
FIG 2
Specific taxa within the infant skin, oral, and anal mycobiomes. (a) Numbers of observed taxa within the skin, oral, and anal mycobiomes of infants, as assessed by Student’s t tests. (b) Relative abundances of fungal taxa within each body site. Each bar represents an individual sample, and samples are ordered by infant. The union of the 10 most abundant and 10 most common taxa is shown. “Other” represents taxa whose relative abundance is <10%. A full taxon legend is located in Fig. S1c.
FIG 3
FIG 3
Infant mycobiome dynamics during the first 30 days of life. Data represent results of principal-coordinate analysis (a, c, and e) of weighted UniFrac (W-Unifrac) distances and median within-infant and between-infant weighted UniFrac distances (b, d, and f) for (a and b) skin, (c and d) oral, and (e and f) anal mycobiomes over time. Principal-coordinate analysis data (individual infant data noted by distinct colored shape; see legend) were tested with PERMANOVA; R2 values and P values are shown. Distances were compared using a Wilcoxon rank sum test (n = 17 infants).
FIG 4
FIG 4
Infant alpha diversity over time. Shannon index values corresponding to fungal OTUs from (a) skin, (b) oral, and (c) anal mycobiomes are presented (n = 17 infants). P values represent group-wise averages of permuted Spearman correlation test statistics controlled by subject. The dotted lines represent a summary linear model that controls for subject, with R2 reported.
FIG 5
FIG 5
Infant skin and oral mycobiomes by birth mode. (a) Principal-coordinate analysis of weighted UniFrac distances of infant skin mycobiomes colored by birth mode (vaginal = blue, n = 30 samples; caesarean section = green, n = 28 samples). PERMANOVA values, R2 values, and P values are shown. (b and d) Weighted UniFrac distances of infant (b) skin and (d) oral mycobiomes from the mother’s vaginal mycobiome by birth mode (paired analysis), as assessed by a Wilcoxon rank sum test (n = 7 vaginal birth families and 9 caesarean section birth families across all time points). (c and e) Relative abundances of (c) Candida albicans in infant skin on day 30 according to birth mode and (e) C. orthopsilosis in the oral cavity across all time points, as assessed with a Wilcoxon rank sum test (false discovery rate corrected; n = 5 vaginally born infants, n = 6 caesarean section-born infants).

References

    1. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. 2015. The infant microbiome development: mom matters. Trends Mol Med 21:109–117. doi:10.1016/j.molmed.2014.12.002.
    1. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T; CHILD Study, Mohn WW, Turvey SE, Finlay BB. 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152. doi:10.1126/scitranslmed.aab2271.
    1. LaTuga MS, Ellis JC, Cotton CM, Goldberg RN, Wynn JL, Jackson RB, Seed PC. 2011. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One 6:e27858. doi:10.1371/journal.pone.0027858.
    1. Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C. 2016. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol 7:1227. doi:10.3389/fmicb.2016.01227.
    1. Heisel T, Podgorski H, Staley CM, Knights D, Sadowsky MJ, Gale CA. 2015. Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One 10:e0116705. doi:10.1371/journal.pone.0116705.
    1. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, Wegienka G, Boushey HA, Ownby DR, Zoratti EM, Levin AM, Johnson CC, Lynch SV. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187–1191. doi:10.1038/nm.4176.
    1. Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, Hugerth LW, Bindl L, Bottu J, Andersson AF, de Beaufort C, Wilmes P. 2017. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol 8:738. doi:10.3389/fmicb.2017.00738.
    1. Bliss JM, Basavegowda KP, Watson WJ, Sheikh AU, Ryan RM. 2008. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr Infect Dis J 27:231–235. doi:10.1097/INF.0b013e31815bb69d.
    1. Nagata R, Nagano H, Ogishima D, Nakamura Y, Hiruma M, Sugita T. 2012. Transmission of the major skin microbiota, Malassezia, from mother to neonate. Pediatr Int Off J Jpn Pediatr Soc 54:350–355. doi:10.1111/j.1442-200X.2012.03563.x.
    1. Kurtzman CP, Robnett CJ, Basehoar-Powers E. 2008. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 8:939–954. doi:10.1111/j.1567-1364.2008.00419.x.
    1. Borman AM, Linton CJ, Oliver D, Palmer MD, Szekely A, Johnson EM. 2010. Rapid molecular identification of pathogenic yeasts by pyrosequencing analysis of 35 nucleotides of internal transcribed spacer 2. J Clin Microbiol 48:3648–3653. doi:10.1128/JCM.01071-10.
    1. Wheeler ML, Limon JJ, Underhill DM. 2017. Immunity to commensal fungi: detente and disease. Annu Rev Pathol 12:359–385. doi:10.1146/annurev-pathol-052016-100342.
    1. Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GGG, Metsis M. 2013. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8:e54379. doi:10.1371/journal.pone.0054379.
    1. Schei K, Avershina E, Øien T, Rudi K, Follestad T, Salamati S, Ødegård RA. 2017. Early gut mycobiota and mother-offspring transfer. Microbiome 5:107. doi:10.1186/s40168-017-0319-x.
    1. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M; NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370. doi:10.1038/nature12171.
    1. Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T. 2011. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 55:625–632. doi:10.1111/j.1348-0421.2011.00364.x.
    1. Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC, Ng WI; NISC Comparative Sequencing Program, Segre JA, Kong HH. 2016. Diverse human skin fungal communities in children converge in adulthood. J Invest Dermatol 136:2356–2363. doi:10.1016/j.jid.2016.05.130.
    1. Jang SJ, Lim SH, Ko JH, Oh BH, Kim SM, Song YC, Yim SM, Lee YW, Choe YB, Ahn KJ. 2009. The investigation on the distribution of Malassezia yeasts on the normal Korean skin by 26S rDNA PCR-RFLP. Ann Dermatol 21:18–26. doi:10.5021/ad.2009.21.1.18.
    1. Sugita T, Suzuki M, Goto S, Nishikawa A, Hiruma M, Yamazaki T, Makimura K. 2010. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med Mycol 48:229–233.
    1. Faergemann J, Fredriksson T. 1980. Age incidence of Pityrosporum orbiculare on human skin. Acta Derm Venereol 60:531–533.
    1. Gupta AK, Kohli Y. 2004. Prevalence of Malassezia species on various body sites in clinically healthy subjects representing different age groups. Med Mycol 42:35–42. doi:10.1080/13693780310001610056.
    1. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713. doi:10.1371/journal.ppat.1000713.
    1. Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD. 2014. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One 9:e90899. doi:10.1371/journal.pone.0090899.
    1. Kleinegger CL, Lockhart SR, Vargas K, Soll DR. 1996. Frequency, intensity, species, and strains of oral Candida vary as a function of host age. J Clin Microbiol 34:2246–2254.
    1. Russell C, Lay KM. 1973. Natural history of Candida species and yeasts in the oral cavities of infants. Arch Oral Biol 18:957–962. doi:10.1016/0003-9969(73)90176-3.
    1. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. 2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med 23:314–326. doi:10.1038/nm.4272.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975. doi:10.1073/pnas.1002601107.
    1. Costello EK, Carlisle EM, Bik EM, Morowitz MJ, Relman DA. 2013. Microbiome assembly across multiple body sites in low-birthweight infants. mBio 4:e00782-13. doi:10.1128/mBio.00782-13.
    1. Chin VK, Lee TY, Rusliza B, Chong PP. 2016. Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review. Int J Mol Sci 17:1643. doi:10.3390/ijms17101643.
    1. Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4:119–128. doi:10.4161/viru.22913.
    1. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI, Mendez K, Knight R, Clemente JC. 2016. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22:250–253. doi:10.1038/nm.4039.
    1. Barbosa JO, Rossoni RD, Vilela SFG, de Alvarenga JA, Velloso Mdos S, Prata MC, Jorge AO, Junqueira JC. 2016. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans. PLoS One 11:e0150457. doi:10.1371/journal.pone.0150457.
    1. Parolin C, Marangoni A, Laghi L, Foschi C, Ñahui Palomino RA, Calonghi N, Cevenini R, Vitali B. 2015. Isolation of vaginal Lactobacilli and characterization of anti-Candida activity. PLoS One 10:e0131220. doi:10.1371/journal.pone.0131220.
    1. Sharma A, Srivastava S. 2014. Anti-Candida activity of spent culture filtrate of Lactobacillus plantarum strain LR/14. J Mycol Med 24:e25–e34. doi:10.1016/j.mycmed.2013.11.001.
    1. Köhler GA, Assefa S, Reid G. 2012. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012:e636474. doi:10.1155/2012/636474.
    1. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber AD, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ. 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343ra82. doi:10.1126/scitranslmed.aad7121.
    1. Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, Lander ES, Knip M; DIABIMMUNE Study Group, Xavier RJ. 2016. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra81. doi:10.1126/scitranslmed.aad0917.
    1. Payne MS, Cullinane M, Garland SM, Tabrizi SN, Donath SM, Bennett CM, Amir LH. 2016. Detection of Candida spp. in the vagina of a cohort of nulliparous pregnant women by culture and molecular methods: is there an association between maternal vaginal and infant oral colonisation? Aust N Z J Obstet Gynaecol 56:179–184. doi:10.1111/ajo.12409.
    1. Leung MHY, Chan KCK, Lee PKH. 2016. Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 4:46. doi:10.1186/s40168-016-0192-z.
    1. Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. 2012. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One 7:e32847. doi:10.1371/journal.pone.0032847.
    1. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189. doi:10.1186/1471-2180-10-189.
    1. Bazzicalupo AL, Bálint M, Schmitt I. 2013. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol 6:102–109. doi:10.1016/j.funeco.2012.09.003.
    1. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. 2005. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284–292. doi:10.1128/JCM.43.1.284-292.2005.
    1. Bonfietti LX, Martins Mdos A, Szeszs MW, Pukiskas SB, Purisco SU, Pimentel FC, Pereira GH, Silva DC, Oliveira L, Carvalho Melhem MDS. 2012. Prevalence, distribution and antifungal susceptibility profiles of Candida parapsilosis, Candida orthopsilosis and Candida metapsilosis bloodstream isolates. J Med Microbiol 61:1003–1008. doi:10.1099/jmm.0.037812-0.
    1. Lovero G, Borghi E, Balbino S, Cirasola D, De Giglio O, Perdoni F, Caggiano G, Morace G, Montagna MT. 2016. Molecular identification and echinocandin susceptibility of Candida parapsilosis complex bloodstream isolates in Italy, 2007–2014. PLoS One 11:e0150218. doi:10.1371/journal.pone.0150218.
    1. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. 2017. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep 7:43481. doi:10.1038/srep43481.
    1. Chandra J, Mukherjee PK. 2015. Candida biofilms: development, architecture, and resistance. Microbiol Spectr 3:10. doi:10.1128/microbiolspec.MB-0020-2015.
    1. Reid G, Tieszer C, Lam D. 1995. Influence of Lactobacilli on the adhesion of Staphylococcus aureus and Candida albicans to fibers and epithelial cells. J Ind Microbiol 15:248–253. doi:10.1007/BF01569832.
    1. Webb BC, Willcox MD, Thomas CJ, Harty DW, Knox KW. 1995. The effect of sodium hypochlorite on potential pathogenic traits of Candida albicans and other Candida species. Oral Microbiol Immunol 10:334–341. doi:10.1111/j.1399-302X.1995.tb00163.x.
    1. Holmes AR, Cannon RD, Jenkinson HF. 1995. Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms. J Ind Microbiol 15:208–213. doi:10.1007/BF01569827.
    1. Sabino R, Sampaio P, Carneiro C, Rosado L, Pais C. 2011. Isolates from hospital environments are the most virulent of the Candida parapsilosis complex. BMC Microbiol 11:180. doi:10.1186/1471-2180-11-180.
    1. Sautour M, Dalle F, Olivieri C, L’ollivier C, Enderlin E, Salome E, Chovelon I, Vagner O, Sixt N, Fricker-Pap V, Aho S, Fontaneau O, Cachia C, Bonnin A. 2009. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital. Am J Infect Control 37:189–194. doi:10.1016/j.ajic.2008.06.009.
    1. van Asbeck EC, Huang YC, Markham AN, Clemons KV, Stevens DA. 2007. Candida parapsilosis fungemia in neonates: genotyping results suggest healthcare workers hands as source, and review of published studies. Mycopathologia 164:287–293. doi:10.1007/s11046-007-9054-3.
    1. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP. 2017. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol 55:2996–3005. doi:10.1128/JCM.00921-17.
    1. Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, Watkins C, Dempsey E, Mattivi F, Tuohy K, Ross RP, Ryan CA, O’Toole PW, Stanton C. 2017. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5:21. doi:10.1186/s40168-017-0240-3.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053.
    1. Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB, Johnson TJ, Hunter R, Knights D, Beckman KB. 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949. doi:10.1038/nbt.3601.
    1. Al-Ghalith GA, Ang K, Hillmann B, Knights D. 2017. SHI7: a streamlined short-read iterative trimming pipeline. . doi:10.5281/zenodo.808832.
    1. Al-Ghalith GA, Montassier E, Ward HN, Knights D. 2016. NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes. PLoS Comput Biol 12:e1004658. doi:10.1371/journal.pcbi.1004658.
    1. Cline LC, Song Z, Al-Ghalith GA, Knights D, Kennedy PG. 2017. Moving beyond de novo clustering in fungal community ecology. New Phytol 216:629–634. doi:10.1111/nph.14752.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.
    1. Fouquier J, Rideout JR, Bolyen E, Chase J, Shiffer A, McDonald D, Knight R, Caporaso JG, Kelley ST. 2016. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses. Microbiome 4:11. doi:10.1186/s40168-016-0153-6.
    1. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461.

Source: PubMed

3
Subscribe