Treatment Effect of Drug-Coated Balloons Is Durable to 3 Years in the Femoropopliteal Arteries: Long-Term Results of the IN.PACT SFA Randomized Trial

Peter A Schneider, John R Laird, Gunnar Tepe, Marianne Brodmann, Thomas Zeller, Dierk Scheinert, Christopher Metzger, Antonio Micari, Ravish Sachar, Michael R Jaff, Hong Wang, Melissa S Hasenbank, Prakash Krishnan, IN.PACT SFA Trial Investigators, Peter A Schneider, John R Laird, Gunnar Tepe, Marianne Brodmann, Thomas Zeller, Dierk Scheinert, Christopher Metzger, Antonio Micari, Ravish Sachar, Michael R Jaff, Hong Wang, Melissa S Hasenbank, Prakash Krishnan, IN.PACT SFA Trial Investigators

Abstract

Background: Randomized controlled trials have reported favorable 1-year outcomes with drug-coated balloons (DCBs) for the treatment of symptomatic peripheral arterial disease when compared with standard percutaneous transluminal angioplasty (PTA). Evidence remains limited on the durability of the treatment effect with DCBs in the longer term.

Methods and results: IN.PACT SFA is a single-blind, randomized trial (Randomized Trial of IN.PACT Admiral Paclitaxel-Coated Percutaneous Transluminal Angioplasty [PTA] Balloon Catheter vs Standard PTA for the Treatment of Atherosclerotic Lesions in the Superficial Femoral Artery [SFA] and/or Proximal Popliteal Artery [PPA]) that enrolled 331 patients with symptomatic (Rutherford 2-4) femoropopliteal lesions up to 18 cm in length. Patients were randomized 2:1 to receive treatment with DCB or PTA. The 36-month assessments included primary patency, freedom from clinically driven target lesion revascularization, major adverse events, and functional outcomes. At 36 months, primary patency remained significantly higher among patients treated with DCB compared with PTA (69.5% versus 45.1%; log rank P<0.001). The rates of clinically driven target lesion revascularization were 15.2% and 31.1% (P=0.002) for the DCB and PTA groups, respectively. Functional outcomes were similarly improved between treatment groups even though subjects in the DCB group required significantly fewer reinterventions versus those in the PTA group (P<0.001 for target lesion revascularization, P=0.001 for target vessel revascularization). There were no device- or procedure-related deaths as adjudicated by an independent Clinical Events Committee.

Conclusions: Three-year results demonstrate a durable and superior treatment effect among patients treated with DCB versus standard PTA, with significantly higher primary patency and lower clinically driven target lesion revascularization, resulting in similar functional improvements with reduced need for repeat interventions.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01175850 for IN.PACT SFA phase I in the European Union and NCT01566461 for IN.PACT SFA phase II in the United States.

Keywords: angioplasty; peripheral arterial disease; target lesion revascularization.

© 2018 The Authors.

Figures

Figure 1.
Figure 1.
Subject flow in the IN.PACT SFA trial through 36 months. Three hundred thirty-one subjects were randomized 2:1 into groups that received percutaneous transluminal angioplasty (PTA) with a paclitaxel drug-coated balloon (DCB) or a standard uncoated balloon (PTA). Subjects are being followed for 5 years, and the results of intent-to-treat analyses have been previously reported for 12 months and 24 months.
Figure 2.
Figure 2.
Durability of effect after treatment with a paclitaxel drug-coated balloon (DCB) for femoropopliteal lesions: primary patency and freedom from clinically driven target lesion revascularization (CD-TLR) at 36 months. Top, Primary patency by Kaplan–Meier estimate was significantly higher in the DCB group compared with the percutaneous transluminal angioplasty (PTA) group (log-rank test, P<0.001). Bottom, Freedom from CD-TLR by Kaplan–Meier estimate was significantly higher in the DCB group compared with the PTA group (log-rank test, P<0.001). Top, Bottom, Bars represent 95% confidence intervals. The number of subjects at risk represents the number of evaluable subjects at the beginning of each 90-day interval. An independent and blinded Clinical Events Committee adjudicated all target lesion revascularization events, and independent and blinded core laboratories reviewed all ultrasound and angiographic images.

References

    1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(suppl S):S5–S67. doi: 10.1016/j.jvs.2006.12.037.
    1. Dick P, Wallner H, Sabeti S, Loewe C, Mlekusch W, Lammer J, Koppensteiner R, Minar E, Schillinger M. Balloon angioplasty versus stenting with nitinol stents in intermediate length superficial femoral artery lesions. Catheter Cardiovasc Interv. 2009;74:1090–1095. doi: 10.1002/ccd.22128.
    1. Schillinger M, Sabeti S, Loewe C, Dick P, Amighi J, Mlekusch W, Schlager O, Cejna M, Lammer J, Minar E. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med. 2006;354:1879–1888. doi: 10.1056/NEJMoa051303.
    1. Laird JR, Katzen BT, Scheinert D, Lammer J, Carpenter J, Buchbinder M, Dave R, Ansel G, Lansky A, Cristea E, Collins TJ, Goldstein J, Jaff MR RESILIENT Investigators. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: twelve-month results from the RESILIENT randomized trial. Circ Cardiovasc Interv. 2010;3:267–276. doi: 10.1161/CIRCINTERVENTIONS.109.903468.
    1. Laird JR, Katzen BT, Scheinert D, Lammer J, Carpenter J, Buchbinder M, Dave R, Ansel G, Lansky A, Cristea E, Collins TJ, Goldstein J, Cao AY, Jaff MR RESILIENT Investigators. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the RESILIENT randomized trial. J Endovasc Ther. 2012;19:1–9. doi: 10.1583/11-3627.1.
    1. Matsumura JS, Yamanouchi D, Goldstein JA, Pollock CW, Bosiers M, Schultz GA, Scheinert D, Rocha-Singh KJ. The United States Study for evaluating endovascular treatments of lesions in the superficial femoral artery and proximal popliteal by using the Protégé EverfLex NitInol STent SYstem II (DURABILITY II). J Vasc Surg. 2013;58:73.e1–83.e1. doi: 10.1016/j.jvs.2012.12.066.
    1. Rocha-Singh KJ, Bosiers M, Schultz G, Jaff MR, Mehta M, Matsumura JS Durability II Investigators. A single stent strategy in patients with lifestyle limiting claudication: 3-year results from the Durability II trial. Catheter Cardiovasc Interv. 2015;86:164–170. doi: 10.1002/ccd.25895.
    1. Scheinert D, Scheinert S, Sax J, Piorkowski C, Bräunlich S, Ulrich M, Biamino G, Schmidt A. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45:312–315. doi: 10.1016/j.jacc.2004.11.026.
    1. Iida O, Uematsu M, Soga Y, Hirano K, Suzuki K, Yokoi H, Muramatsu T, Inoue N, Nanto S, Nagata S. Timing of the restenosis following nitinol stenting in the superficial femoral artery and the factors associated with early and late restenoses. Catheter Cardiovasc Interv. 2011;78:611–617. doi: 10.1002/ccd.23064.
    1. Banerjee S, Sarode K, Mohammad A, Gigliotti O, Baig MS, Tsai S, Shammas NW, Prasad A, Abu-Fadel M, Klein A, Armstrong EJ, Jeon-Slaughter H, Brilakis ES, Bhatt DL. Femoropopliteal artery stent thrombosis: report from the excellence in peripheral artery disease registry. Circ Cardiovasc Interv. 2016;9:e002730. doi: 10.1161/CIRCINTERVENTIONS.115.002730.
    1. Speck U, Cremers B, Kelsch B, Biedermann M, Clever YP, Schaffner S, Mahnkopf D, Hanisch U, Böhm M, Scheller B. Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ Cardiovasc Interv. 2012;5:392–400. doi: 10.1161/CIRCINTERVENTIONS.111.967794.
    1. Tepe G, Zeller T, Albrecht T, Heller S, Schwarzwälder U, Beregi JP, Claussen CD, Oldenburg A, Scheller B, Speck U. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358:689–699. doi: 10.1056/NEJMoa0706356.
    1. Werk M, Langner S, Reinkensmeier B, Boettcher HF, Tepe G, Dietz U, Hosten N, Hamm B, Speck U, Ricke J. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation. 2008;118:1358–1365. doi: 10.1161/CIRCULATIONAHA.107.735985.
    1. Werk M, Albrecht T, Meyer DR, Ahmed MN, Behne A, Dietz U, Eschenbach G, Hartmann H, Lange C, Schnorr B, Stiepani H, Zoccai GB, Hänninen EL. Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv. 2012;5:831–840. doi: 10.1161/CIRCINTERVENTIONS.112.971630.
    1. Scheinert D, Duda S, Zeller T, Krankenberg H, Ricke J, Bosiers M, Tepe G, Naisbitt S, Rosenfield K. The LEVANT I (Lutonix paclitaxel-coated balloon for the prevention of femoropopliteal restenosis) trial for femoropopliteal revascularization: first-in-human randomized trial of low-dose drug-coated balloon versus uncoated balloon angioplasty. JACC Cardiovasc Interv. 2014;7:10–19. doi: 10.1016/j.jcin.2013.05.022.
    1. Rosenfield K, Jaff MR, White CJ, Rocha-Singh K, Mena-Hurtado C, Metzger DC, Brodmann M, Pilger E, Zeller T, Krishnan P, Gammon R, Muller-Hulsbeck S, Nehler MR, Benenati JF, Scheinert D for the LEVANT 2 Investigators. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. N Engl J Med. 2015;373:145–153. doi: 10.1056/NEJMoa1406235.
    1. Schroeder H, Meyer DR, Lux B, Ruecker F, Martorana M, Duda S. Two-year results of a low-dose drug-coated balloon for revascularization of the femoropopliteal artery: outcomes from the ILLUMENATE first-in-human study. Catheter Cardiovasc Interv. 2015;86:278–286. doi: 10.1002/ccd.25900.
    1. Tepe G, Laird J, Schneider P, Brodmann M, Krishnan P, Micari A, Metzger C, Scheinert D, Zeller T, Cohen DJ, Snead DB, Alexander B, Landini M, Jaff MR IN.PACT SFA Trial Investigators. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation. 2015;131:495–502. doi: 10.1161/CIRCULATIONAHA.114.011004.
    1. Laird JR, Schneider PA, Tepe G, Brodmann M, Zeller T, Metzger C, Krishnan P, Scheinert D, Micari A, Cohen DJ, Wang H, Hasenbank MS, Jaff MR IN.PACT SFA Trial Investigators. Durability of treatment effect using a drug-coated balloon for femoropopliteal lesions: 24-month results of IN.PACT SFA. J Am Coll Cardiol. 2015;66:2329–2338. doi: 10.1016/j.jacc.2015.09.063.
    1. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, Machan LS, Snyder SA, O’Leary EE, Ragheb AO, Zeller T Zilver PTX Investigators. Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal artery: 5-year results of the Zilver PTX randomized trial. Circulation. 2016;133:1472–1483. discussion 1483. doi: 10.1161/CIRCULATIONAHA.115.016900.
    1. Geraghty PJ, Mewissen MW, Jaff MR, Ansel GM VIBRANT Investigators. Three-year results of the VIBRANT trial of VIABAHN endoprosthesis versus bare nitinol stent implantation for complex superficial femoral artery occlusive disease. J Vasc Surg. 2013;58:386.e4–395.e4. doi: 10.1016/j.jvs.2013.01.050.
    1. Schillinger M, Minar E. Restenosis after percutaneous angioplasty: the role of vascular inflammation. Vasc Health Risk Manag. 2005;1:73–78.
    1. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, Snyder SA, O’Leary EE, Tepe G, Scheinert D, Zeller T Zilver PTX Investigators. Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies. J Am Coll Cardiol. 2013;61:2417–2427. doi: 10.1016/j.jacc.2013.03.034.
    1. Regensteiner JG, Steiner JF, Panzer RJ, Hiatt WR. Evaluation of walking impairment by questionnaire in patients with peripheral arterial disease. J Vasc Med Biol. 1990;2:142–158.
    1. McDermott MM, Liu K, Guralnik JM, Martin GJ, Criqui MH, Greenland P. Measurement of walking endurance and walking velocity with questionnaire: validation of the Walking Impairment Questionnaire in men and women with peripheral arterial disease. J Vasc Surg. 1998;28:1072–1081.
    1. Myers SA, Johanning JM, Stergiou N, Lynch TG, Longo GM, Pipinos II. Claudication distances and the Walking Impairment Questionnaire best describe the ambulatory limitations in patients with symptomatic peripheral arterial disease. J Vasc Surg. 2008;47:550–555. doi: 10.1016/j.jvs.2007.10.052.
    1. Nicolaï SP, Kruidenier LM, Rouwet EV, Graffius K, Prins MH, Teijink JA. The Walking Impairment Questionnaire: an effective tool to assess the effect of treatment in patients with intermittent claudication. J Vasc Surg. 2009;50:89–94. doi: 10.1016/j.jvs.2008.12.073.
    1. Sagar SP, Brown PM, Zelt DT, Pickett WL, Tranmer JE. Further clinical validation of the walking impairment questionnaire for classification of walking performance in patients with peripheral artery disease. Int J Vasc Med. 2012;2012:190641. doi: 10.1155/2012/190641.
    1. Scheinert D. Drug coated balloon treatment for patients with intermittent claudication: new insights from the IN.PACT Global Study long lesion (≥15 cm) imaging cohort.. Paper presented at: EuroPCR 2015, Meeting of the European Association of Percutaneous Cardiovascular Interventions; May 19–22, 2015; Paris, France.
    1. Katsanos K, Geisler BP, Garner AM, Zayed H, Cleveland T, Pietzsch JB. Economic analysis of endovascular drug-eluting treatments for femoropopliteal artery disease in the UK. BMJ Open. 2016;6:e011245. doi: 10.1136/bmjopen-2016-011245.

Source: PubMed

3
Subscribe