High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients

Marc Delord, Philippe Rousselot, Jean Michel Cayuela, François Sigaux, Joëlle Guilhot, Claude Preudhomme, François Guilhot, Pascale Loiseau, Emmanuel Raffoux, Daniela Geromin, Emmanuelle Génin, Fabien Calvo, Heriberto Bruzzoni-Giovanelli, Marc Delord, Philippe Rousselot, Jean Michel Cayuela, François Sigaux, Joëlle Guilhot, Claude Preudhomme, François Guilhot, Pascale Loiseau, Emmanuel Raffoux, Daniela Geromin, Emmanuelle Génin, Fabien Calvo, Heriberto Bruzzoni-Giovanelli

Abstract

Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a candidate gene approach. In an alternative strategy, we analyzed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using a DNA chip containing 857 SNPs covering 94 drug transporter genes. Two cohorts of CML patients treated with imatinib were evaluated: an exploratory cohort including 105 patients treated at 400 mg/d and a validation cohort including patients sampled from the 400 mg/d and 600 mg/d arms of the prospective SPIRIT trial (n=239). Twelve SNPs discriminating patients according to cumulative incidence of major molecular response (CI-MMR) were identified within the exploratory cohort. Three of them, all located within the ABCG2 gene, were validated in patients included in the 400 mg/d arm of the SPIRIT trial. We identified an ABCG2 haplotype (define as G-G, rs12505410 and rs2725252) as associated with significantly higher CI-MMR in patients treated at 400 mg/d. Interestingly, we found that patients carrying this ABCG2 "favorable" haplotype in the 400 mg arm reached similar CI-MMR rates that patients randomized in the imatinib 600 mg/d arm. Our results suggest that response to imatinib may be influenced by constitutive haplotypes in drug transporter genes. Lower response rates associated with "non- favorable" ABCG2 haplotypes may be overcome by increasing the imatinib daily dose up to 600 mg/d.

Trial registration: ClinicalTrials.gov NCT00219739.

Figures

Figure 1. Cumulative incidence of MMR (CI-MMR)…
Figure 1. Cumulative incidence of MMR (CI-MMR) according to Sokal score and treatment arms
A) 18 months CI-MMR was estimated with respect to Sokal score (n = 312). A Fine and Gray model showed that time to MMR was related to Sokal status and that the coefficient of regression within the first 18 months decreased by 36% (95% confidence interval (CI), 47% to 22%) on average when Sokal increased (P < 0.001). CI-MMR was 70% for the low Sokal score, 57% for the intermediate Sokal score and 39% for high Sokal score. B) CI-MMR was estimated in the exploratory cohort (SLEC) and compared to both treatment arms of the validation cohort (SVC). CI-MMR was comparable between the SLEC and the 400 mg/d arm of SVC (n = 237, P = 0.700), but significantly different between the SLEC and the 600 mg/d arm of SVC (n = 212, P = 0.003). HR was 1.71% (95% CI, 1.20% to 2.44%) in the latter (n = 212, P = 0.003). CI-MMR was 49% for the exploratory cohort, 49% and 67% for the 400 and the 600 mg/d arm of the SVC, respectively.
Figure 2. Frequencies and cumulative incidence of…
Figure 2. Frequencies and cumulative incidence of MMR relative to ABCG2 haplotypes
A) Distribution of haplotype frequencies in the SLEC, SVC and the CEU populations. Haplotypes were distributed homogeneously over the different populations. B) Cumulative incidence at 18-months of major molecular response (CI-MMR) was calculated in the SLEC according to ABCG2 haplotypes G-G. CI-MMR of patients with at least one copy of haplotype G-G was 69%. CI-MMR for other patients was 34%. C) CI-MMR at 18-months in all SVC patients with haplotype G-G was 63% and 47% for other patients (P = 0.006). D) CI-MMR in SVC patients treated with 400 mg/d was 57% and 36% for G-G haplotype carriers and other haplotype carriers respectively (P = 0.005). E) CI-MMR in SVC patients treated with 600 mg/d was 74% and 58% for G-G haplotype carriers and other patients respectively (P = 0.185). F) CI-MMR was not significantly different between in SVC patients with haplotype G-G receiving 400 mg/d and those with other haplotypes receiving 600 mg/d (57% vs 58% respectively, P = 0.950).

References

    1. Hochhaus A, O'Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Müller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP, Larson RA. Macmillan Publishers Limited; 2009. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia; pp. 1054–1061. Available at: .
    1. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, Moiraghi B, Shen Z, Mayer J, Pasquini R, Nakamae H, Huguet F, Boqué C, Chuah C, Bleickardt E, Bradley-Garelik MB, Zhu C, Szatrowski T, Shapiro D, Baccarani M. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. The New England Journal of Medicine. 2010;362(24):2260–2270.
    1. Saglio G, Kim D-W, Issaragrisil S, Le Coutre P, Etienne G, Lobo C, Pasquini R, Clark RE, Hochhaus A, Hughes TP, Gallagher N, Hoenekopp A, Dong M, Haque A, Larson RA, Kantarjian HM. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. The New England Journal of Medicine. 2010;362(24):2251–2259.
    1. Aichberger KJ, Herndlhofer S, Schernthaner G-H, Schillinger M, Mitterbauer-Hohendanner G, Sillaber C, Valent P. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. American Journal of Hematology. 2011;86(7):1–7.
    1. Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, Bouvaist H, Canuet M, Pison C, Macro M, Poubeau P, Girerd B, Natali D, Guignabert C, Perros F, O'Callaghan DS, Jais X, Tubert-Bitter P, Zalcman G, Sitbon O, Simonneau G, Humbert M. Pulmonary Arterial Hypertension in Patients Treated by Dasatinib. Circulation. 2012;125(17):2128–37.
    1. Kantarjian HM, O'Brien S, Cortes J, Giles FJ, Rios MB, Shan J, Faderl S, Garcia-Manero G, Ferrajoli A, Verstovsek S, Wierda W, Keating M, Talpaz M. Imatinib Mesylate Therapy Improves Survival in Patients with Newly Diagnosed Philadelphia Chromosome-Positive Chronic Myelogenous Leukemia in the Chronic Phase. Cancer. 2003;98:2636–2642.
    1. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, Goh Y-T, Rosti G, Nakamae H, Gallagher NJ, Hoenekopp A, Blakesley RE, Larson RA, Hughes TP. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. The lancet oncology. 2011;12(9):841–851.
    1. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, Wang J, Kassack Ipiña JJ, Kim D-W, Ogura M, Pavlovsky C, Junghanss C, Milone JH, Nicolini FE, Robak T, Van Droogenbroeck J, Vellenga E, Bradley-Garelik MB, Zhu C, Hochhaus A. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION) Blood. 2012;119(5):1123–9.
    1. Chomel J, Turhan AG. Chronic myeloid leukemia stem cells in the era of targeted therapies: resistance, persistence and long-term dormancy. Oncotarget. 2011;2(9):713–27.
    1. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–4028.
    1. Marin D, Bazeos A, Mahon F-X, Eliasson L, Milojkovic D, Bua M, Apperley JF, Szydlo R, Desai R, Kozlowski K, Paliompeis C, Latham V, Foroni L, Molimard M, Reid A, Rezvani K, de Lavallade H, Guallar C, Goldman J, Khorashad JS. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. Journal of clinical oncology. 2010;28(14):2381–2388.
    1. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard M-A, Lassalle R, Marit G, Reiffers J, Begaud B, Moore N, Molimard M, Mahon F-X. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007;109(8):3496–3499.
    1. Chen H-C, Hu W-X, Liu Q-X, Li W-K, Chen F-Z, Rao Z-Z, Liu X-F, Luo Y-P, Cao Y-F. Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. European journal of cancer prevention. 2008;17(3):251–258.
    1. Kim DHD, Xu W, Ma C, Liu X, Siminovitch K, Messner HA, Lipton JH. Genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia. Blood. 2009;113(11):2517–2525.
    1. Taspinar M, Aydos SE, Comez O, Elhan AH, Karabulut HG, Sunguroglu A. CYP1A1, GST gene polymorphisms and risk of chronic myeloid leukemia. Swiss medical weekly. 2008;138(1-2):12–17.
    1. Zhang Y, Wang B, Ye S, Liu S, Liu M, Shen C, Teng Y, Qi J. Killer cell immunoglobulin-like receptor gene polymorphisms in patients with leukemia: possible association with susceptibility to the disease. Leukemia research. 2010;34(1):55–58.
    1. Boultwood J, Perry J, Zaman R, Fernandez-Santamaria C, Littlewood T, Kusec R, Pellagatti A, Wang L, Clark RE, Wainscoat JS. High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression. Leukemia. 2010;24(6):1139–1145.
    1. Zhang S-J, Shi J-Y, Li J-Y. GATA-2 L359 V mutation is exclusively associated with CML progression but not other hematological malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leukemia research. 2009;33(8):1141–1143.
    1. Nambu T, Hamada A, Nakashima R, Yuki M, Kawaguchi T, Mitsuya H, Saito H. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biological & pharmaceutical bulletin. 2011;34(1):114–119.
    1. Angelini S, Soverini S, Ravegnini G, Barnett M, Turrini E, Thornquist M, Pane F, Hughes TP, White DL, Radich J, Kim D-W, Saglio G, Cilloni D, Iacobucci I, Perini G, Woodman R, Cantelli-Forti G, Baccarani M, Hrelia P, Martinelli G. Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica. 2013;98(2):193–200.
    1. Crossman LC, O'Hare T, Lange T, Willis SG, Stoffregen EP, Corbin AS, O'Brien SG, Heinrich MC, Druker BJ, Middleton PG, Deininger MWN. A single nucleotide polymorphism in the coding region of ABL and its effects on sensitivity to imatinib. Leukemia. 2005;19(11):1859–1862.
    1. Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, Molimard M, Krajinovic M, Mahon F-X. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2008;112(5):2024–2027.
    1. Guillem VM, Cervantes F, Martínez J, Alvarez-Larrán A, Collado M, Camós M, Sureda A, Maffioli M, Marugán I, Hernández-Boluda J-C. XPC genetic polymorphisms correlate with the response to imatinib treatment in patients with chronic phase chronic myeloid leukemia. American journal of hematology. 2010;85(7):482–486.
    1. Kim DH, Xu W, Kamel-Reid S, Liu X, Jung CW, Kim S, Lipton JH. Clinical relevance of vascular endothelial growth factor (VEGFA) and VEGF receptor (VEGFR2) gene polymorphism on the treatment outcome following imatinib therapy. Annals of oncology. 2010;21(6):1179–1188.
    1. Kim DHD, Kong JH, Byeun JY, Jung CW, Xu W, Liu X, Kamel-Reid S, Kim Y-K, Kim H-J, Lipton JH. The IFNG (IFN-gamma) genotype predicts cytogenetic and molecular response to imatinib therapy in chronic myeloid leukemia. Clinical cancer research. 2010;16(21):5339–5350.
    1. Kim DHD, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, Messner HA, Lipton JH. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clinical cancer research. 2009;15(14):4750–4758.
    1. Maffioli M, Camós M, Gaya A, Hernández-Boluda J-C, Alvarez-Larrán A, Domingo A, Granell M, Guillem V, Vallansot R, Costa D, Bellosillo B, Colomer D, Cervantes F. Correlation between genetic polymorphisms of the hOCT1 and MDR1 genes and the response to imatinib in patients newly diagnosed with chronic-phase chronic myeloid leukemia. Leukemia Research. 2011;35(8):1014–1019.
    1. Ni L-N, Li J-Y, Miao K-R, Qiao C, Zhang S-J, Qiu H-R, Qian S-X. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Medical oncology. 2011;28(1):265–269.
    1. Deenik W, van der Holt B, Janssen JJWM, Chu IWT, Valk PJM, Ossenkoppele GJ, van der Heiden IP, Sonneveld P, van Schaik RHN, Cornelissen JJ. Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib. Blood. 2010;116(26):6144–6146.
    1. Dulucq S, Preudhomme C, Guilhot F, Mahon F-X. Response: is there really a relationship between Multidrug Resistance Gene (MDR1) polymorphisms and major molecular response to imatinib in chronic myeloid leukemia? Blood. 2010;116(26):6145–6146.
    1. Giles FJ, Rosti G, Beris P, Clark RE, Le Coutre P, Mahon F-X, Steegmann J-L, Valent P, Saglio G. Nilotinib is superior to imatinib as first-line therapy of chronic myeloid leukemia: the ENESTnd study. Expert review of hematology. 2010;3(6):665–673.
    1. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, Cervantes F, Deininger M, Gratwohl A, Guilhot F, Hochhaus A, Horowitz M, Hughes T, Kantarjian H, Larson R, Radich J, Simonsson B, Silver RT, Goldman J, Hehlmann R. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Journal of clinical oncology official journal of the American Society of Clinical Oncology. 2009;27(35):6041–6051.
    1. Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. Journal of the National Cancer Institute. 2009;101(21):1446–52.
    1. Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert J-C, Beaune P, Laurent-Puig P, Loriot M-A, Charron D, Elbaz A. Association between Parkinson's disease and the HLA-DRB1 locus. Movement disorders. 2012;27(9):1104–10.
    1. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Müller MC, Pletsch N, Proetel U, Haferlach C, Schlegelberger B, Balleisen L, Hänel M, Pfirrmann M, Krause SW, Nerl C, Pralle H, Gratwohl A, Hossfeld DK, Hasford J, Hochhaus A, Saussele S. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-α in newly diagnosed chronic myeloid leukemia. Journal of clinical oncology. 2011;29(12):1634–1642.
    1. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, Coiteux V, Gardembas M, Berthou C, Vekhoff A, Rea D, Jourdan E, Allard C, Delmer A, Rousselot P, Legros L, Berger M, Corm S, Etienne G, Roche-Lestienne C, Eclache V, Mahon F-X, Guilhot F. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. The New England journal of medicine. 2010;363(26):2511–2521.
    1. Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug metabolism and pharmacokinetics. Int J Biochem Mol Biol. 2012;27(1):85–105.
    1. Mo W, Zhang J-T. Human ABCG2: structure, function, and its role in multidrug resistance. International journal of biochemistry and molecular biology. 2012;3(1):1–27.
    1. White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, Saunders VA, Manley PW, Hughes TP. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2010;28:2761–2767.
    1. White D.L, Saunders V.A, Dang P, Engler J, Hughes TP. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia. 2010;24(11):1962–1965.
    1. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NCP, Druker BJ, Gabert J, Grimwade D, Hehlmann R, Kamel-Reid S, Lipton JH, Longtine J, Martinelli G, Saglio G, Soverini S, Stock W, Goldman JM. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.
    1. Site 1000 Genomes Project ftp. . Available at:
    1. Latouche A, Porcher R, Chevret S. Sample size formula for proportional hazards modelling of competing risks. Statistics in Medicine. 2004;23(21):3263–3274.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B Methodological. 1995;57(1):289–300.
    1. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score Tests for Association between Traits and Haplotypes when Linkage Phase Is Ambiguous. American journal of human genetics. 2002;70(2):425–434.
    1. Sinnwell JP, Schaid DJ. Haplo.stats: Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase is Ambiguous. R package version 1.4.4.
    1. Site SG. GEMC. . Available at: . )
    1. González, Juan R, Armengol, Lluís, Guinó, Elisabet, Solé, Xavier, Moreno V. .

Source: PubMed

3
Subscribe