A longitudinal, randomized experimental pilot study to investigate the effects of airborne ultrasound on human mental health, cognition, and brain structure

L Ascone, C Kling, J Wieczorek, C Koch, S Kühn, L Ascone, C Kling, J Wieczorek, C Koch, S Kühn

Abstract

Ultrasound-(US) emitting sources are highly present in modern human environments (e.g., movement sensors, electric transformers). US affecting humans or even posing a health hazard remains understudied. Hence, ultrasonic (22.4 kHz) vs. sham devices were installed in participants' bedrooms, and active for 28 nights. Somatic and psychiatric symptoms, sound-sensitivity, sleep quality, executive function, and structural MRI were assessed pre-post. Somatization (possible nocebo) and phasic alertness increased significantly in sham, accuracy in a flexibility task decreased significantly in the verum condition (indicating hastier responses). Effects were not sustained after p-level adjustment. Exploratory voxel-based morphometry (VBM) revealed regional grey matter (rGMV) but no regional white matter volume changes in verum (relative to placebo). rGMV increased in bilateral cerebellum VIIb/Crus II and anterior cingulate (BA24). There were rGMV decreases in two bilateral frontal clusters: in the middle frontal gyri/opercular part of inferior frontal gyrus (BA46, 44), and the superior frontal gyri (BA4 ,6, 8). No brain-behavior-links were identified. Given the overall pattern of results, it is suggested that ultrasound may particularly induce regional gray matter decline in frontal areas, however with yet unclear behavioral consequences. Given the localization of clusters, candidate behavioral variables for follow-up investigation are complex motor control/coordination, stress regulation, speech processing, and inhibition tasks.Trial registration: The trial was registered at NIH www.clinicaltrials.gov , trial identifier: NCT03459183, trial name: SonicBrain01, full trial protocol available here: https://ichgcp.net/clinical-trials-registry/NCT03459183 .

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Graphical depiction of identified significant clusters in the VBM analysis of increases in rGMV (in red): in the left anterior cingulate cortex (ACC)/medial segment of superior frontal gyrus (MSFG) and in the right cerebellum VIIb/Crus II/Crus II, as well as decreases in rGMV (in blue): in the left and right middle frontal gyrus (MFG) adjacent to the opercular part of the inferior frontal gyrus (OpIFG), and in the left and right superior frontal gyrus (SFG), in ultrasound verum, relative to placebo.

References

    1. Leighton TG. Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? Proc. R. Soc. Math. Phys. Eng. Sci. 2016;472(2185):20150624.
    1. Fletcher MD, Lloyd Jones S, White PR, Dolder CN, Lineton B, Leighton TG. Public exposure to ultrasound and very high-frequency sound in air. J. Acoust. Soc. Am. 2018;144(4):2554–2564. doi: 10.1121/1.5063817.
    1. Kühler R, Weichenberger M, Bauer M, Hensel J, Brühl R, Ihlenfeld A, et al. Does airborne ultrasound lead to activation of the auditory cortex? Biomed. Eng. Biomed. Tech. 2019;64(4):481–493. doi: 10.1515/bmt-2018-0048.
    1. Smagowska B, Pawlaczyk-Łuszczyńska M. Effects of ultrasonic noise on the human body—A bibliographic review. Int. J. Occup. Saf. Ergon. 2013;19(2):195–202. doi: 10.1080/10803548.2013.11076978.
    1. Holmberg K, Landström U, Nordström B. Annoyance and discomfort during exposure to high-frequency noise from an ultrasonic washer. Percept. Mot. Skills. 1995;81(3 Pt 1):819–827. doi: 10.2466/pms.1995.81.3.819.
    1. van Wieringen A, Glorieux C. Assessment of short-term exposure to an ultrasonic rodent repellent device. J. Acoust. Soc. Am. 2018;144(4):2501–2510. doi: 10.1121/1.5063987.
    1. Fletcher M, Lloyd Jones S, White P, Dolder C, Leighton T, Lineton B. Effects of very high-frequency sound and ultrasound on humans part II: A double-blind randomized provocation study of inaudible 20-kHz ultrasound. J. Acoust. Soc. Am. 2018;31(144):2521–2531. doi: 10.1121/1.5063818.
    1. Oohashi T, Nishina E, Honda M, Yonekura Y, Fuwamoto Y, Kawai N, et al. Inaudible high-frequency sounds affect brain activity: Hypersonic effect. J. Neurophysiol. 2000;83(6):3548–3558. doi: 10.1152/jn.2000.83.6.3548.
    1. Fujioka T, Kakigi R, Gunji A, Takeshima Y. The auditory evoked magnetic fields to very high frequency tones. Neuroscience. 2002;112(2):367–381. doi: 10.1016/S0306-4522(02)00086-6.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59(Suppl 20):22–33.
    1. First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B., Benjamin, L. S. Structured clinical interview for DSM-IV® axis II personality disorders SCID-II. (American Psychiatric Pub, 1997).
    1. Derogatis LR, Melisaratos N. The Brief Symptom Inventory: An introductory report. Psychol. Med. 1983;13(3):595–605. doi: 10.1017/S0033291700048017.
    1. Cohen S, Kamarck T, Mermelstein R. Perceived stress scale. Meas. Stress Guide Health Soc. Sci. 1994;10:1–2.
    1. Johns MW. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep. 1991;14(6):540–545. doi: 10.1093/sleep/14.6.540.
    1. Johns MW. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep. 1992;15(4):376–381. doi: 10.1093/sleep/15.4.376.
    1. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Abbasi M, Tokhi MO, Falahati M, Yazdanirad S, Ghaljahi M, Etemadinezhad S, et al. Effect of personality traits on sensitivity, annoyance and loudness perception of low- and high-frequency noise. J. Low Freq. Noise Vib. Act. Control. 2020;29:1461348420945818.
    1. McCrae RR, Costa Paul T., Jr Brief versions of the NEO-PI-3. J. Individ. Differ. 2007;28(3):116–128. doi: 10.1027/1614-0001.28.3.116.
    1. Schutte M, Marks A, Wenning E, Griefahn B. The development of the noise sensitivity questionnaire. Noise Health. 2007;9(34):15–24. doi: 10.4103/1463-1741.34700.
    1. Ascone L, Uppenkamp S, Behler O, Lineton B, Burke E, Koch C, Kühn S, Gersak G. Deductive development and validation of a questionnaire to assess sensitivity to very Low and very high frequency sounds: SISUS-Q (Sensitivity to Infra-Sound and Ultra-Sound Questionnaire) Noise Health. 2020;21(101):173–182.
    1. Zimmermann, P., Fimm, B. Testbatterie zur Aufmerksamkeitsprüfung-Version 2.2:(TAP);[Handbuch]. Psytest; (2009).
    1. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018.
    1. Hayasaka S, Nichols TE. Combining voxel intensity and cluster extent with permutation test framework. NeuroImage. 2004;23(1):54–63. doi: 10.1016/j.neuroimage.2004.04.035.
    1. Croux, C., Dehon, C. Robustness versus efficiency for nonparametric correlation measures. FBE Res Rep KBI0803 [Internet]. 2008 Jan [cited 2019 Dec 10]. .
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. Hillsdale: Erlbaum Associates; 1988.
    1. Rinne-Albers MA, Pannekoek JN, van Hoof M-J, van Lang ND, Lamers-Winkelman F, Rombouts SA, et al. Anterior cingulate cortex grey matter volume abnormalities in adolescents with PTSD after childhood sexual abuse. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2017;27(11):1163–1171. doi: 10.1016/j.euroneuro.2017.08.432.
    1. Stevens FL, Hurley RA, Taber KH, Hurley RA, Hayman LA, Taber KH. Anterior cingulate cortex: Unique role in cognition and emotion. J. Neuropsychiatry Clin. Neurosci. 2011;23(2):121–125. doi: 10.1176/jnp.23.2.jnp121.
    1. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. NeuroImage. 2012;59(2):1560–1570. doi: 10.1016/j.neuroimage.2011.08.065.
    1. Falquez R, Couto B, Ibanez A, Freitag MT, Berger M, Arens EA, et al. Detaching from the negative by reappraisal: The role of right superior frontal gyrus (BA9/32) Front. Behav. Neurosci. 2014 doi: 10.3389/fnbeh.2014.00165/full.
    1. Jensen KB, Kaptchuk TJ, Chen X, Kirsch I, Ingvar M, Gollub RL, Kong J. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. Cereb. Cortex. 2015;25(10):3903–3910. doi: 10.1093/cercor/bhu275.
    1. Crichton F, Petrie KJ. Health complaints and wind turbines: The efficacy of explaining the nocebo response to reduce symptom reporting. Environ. Res. 2015;1(140):449–455. doi: 10.1016/j.envres.2015.04.016.

Source: PubMed

3
Subscribe