Lessons from SARS: control of acute lung failure by the SARS receptor ACE2

Keiji Kuba, Yumiko Imai, Shuan Rao, Chengyu Jiang, Josef M Penninger, Keiji Kuba, Yumiko Imai, Shuan Rao, Chengyu Jiang, Josef M Penninger

Abstract

Angiotensin-converting enzyme 2 (ACE2), a second angiotensin-converting enzyme (ACE), regulates the renin-angiotensin system by counterbalancing ACE activity. Accumulating evidence in recent years has demonstrated a physiological and pathological role of ACE2 in the cardiovascular systems. Recently, it has been shown that severe acute respiratory syndrome (SARS) coronavirus, the cause of SARS, utilizes ACE2 as an essential receptor for cell fusion and in vivo infections in mice. Intriguingly, ACE2 acts as a protective factor in various experimental models of acute lung failure and, therefore, acts not only as a key determinant for SARS virus entry into cells but also contributes to SARS pathogenesis. Here we review the role of ACE2 in disease pathogenesis, including lung diseases and cardiovascular diseases.

Figures

Fig. 1
Fig. 1
Current view of ACE and ACE2 functions. ANG I (DRVYIHPFHL) serves as a substrate for both ACE and ACE2. ANG II (DRVYIHPF) is known to act as vasoconstrictor in vivo. The function of angiotensin 1–9 (DRVYIHPFH) is not well understood. Both ACE and ACE2 are involved in the production of the vasodilator peptide angiotensin 1–7 (DRVYIHPF). Red arrowheads ACE cleavage site; blue arrowheads ACE2 cleavage sites. It should be noted that ACE2 is an unspecific protease and can cleave multiple additional substrates, such as apelin
Fig. 2
Fig. 2
Schematic diagram of the role of the RAS in acute lung failure and proposed SARS-CoV action. In acute lung injury, such as acid aspiration, pneumonia, or sepsis, the generation of ANG II from ANG I is enhanced by ACE, and ANG II induces acute lung failure through stimulation of the AT1 receptor, while ACE2 and ANG II type 2 receptor negatively regulate this pathway and protect from acute lung failure. On the other hand, SARS-CoV infection is mediated through binding of the SARS-Spike protein to ACE2 or L-SIGN and down-regulates the protective molecule ACE2, and thus leads to severe lung injury and acute lung failure

References

    1. Ferrario CM. The renin–angiotensin system: importance in physiology and pathology. J Cardiovasc Pharmacol. 1990;15(Suppl 3):S1–S5. doi: 10.1097/00005344-199000153-00001.
    1. Inagami T, Yamano Y, Bardhan S, et al. Cloning, expression and regulation of angiotensin II receptors. Adv Exp Med Biol. 1995;377:311–317.
    1. Nicholls MG, Richards AM, Agarwal M. The importance of the renin–angiotensin system in cardiovascular disease. J Hum Hypertens. 1998;12(5):295–299. doi: 10.1038/sj.jhh.1000638.
    1. Skeggs LT, Dorer FE, Levine M, Lentz KE, Kahn JR. The biochemistry of the renin–angiotensin system. Adv Exp Med Biol. 1980;130:1–27.
    1. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23(4):177–183. doi: 10.1016/S0165-6147(00)01994-5.
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–33243. doi: 10.1074/jbc.M002615200.
    1. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1–E9.
    1. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–14843. doi: 10.1074/jbc.M200581200.
    1. Krege JH, John SW, Langenbach LL, et al. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375(6527):146–148. doi: 10.1038/375146a0.
    1. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828. doi: 10.1038/nature00786.
    1. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. doi: 10.1038/nature02145.
    1. Wang P, Chen J, Zheng A, et al. Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun. 2004;315(2):439–444. doi: 10.1016/j.bbrc.2004.01.076.
    1. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875–879. doi: 10.1038/nm1267.
    1. Tsang KW, Ho PL, Ooi GC, et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1977–1985. doi: 10.1056/NEJMoa030666.
    1. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1986–1994. doi: 10.1056/NEJMoa030685.
    1. Poutanen SM, Low DE, Henry B, et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003;348(20):1995–2005. doi: 10.1056/NEJMoa030634.
    1. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966. doi: 10.1056/NEJMoa030781.
    1. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–1976. doi: 10.1056/NEJMoa030747.
    1. Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1995;151(2 Pt 1):293–301.
    1. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–1349. doi: 10.1056/NEJM200005043421806.
    1. Vincent JL, Sakr Y, Ranieri VM. Epidemiology and outcome of acute respiratory failure in intensive care unit patients. Crit Care Med. 2003;31(Suppl 4):S296–S299. doi: 10.1097/01.CCM.0000057906.89552.8F.
    1. Andrews P, Azoulay E, Antonelli M, et al. Year in review in intensive care medicine, 2004. I Respiratory failure, infection, and sepsis. Intensive Care Med. 2005;31(1):28–40. doi: 10.1007/s00134-004-2529-5.
    1. Fouchier RA, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101(5):1356–1361. doi: 10.1073/pnas.0308352100.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570.
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. doi: 10.1038/nature03712.
    1. Tanimoto K, Sugiyama F, Goto Y, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994;269(50):31334–31337.
    1. Sugaya T, Nishimatsu S, Tanimoto K, et al. Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem. 1995;270(32):18719–18722. doi: 10.1074/jbc.270.32.18719.
    1. Riviere G, Michaud A, Breton C, et al. Angiotensin-converting enzyme 2 (ACE2) and ACE activities display tissue-specific sensitivity to undernutrition-programmed hypertension in the adult rat. Hypertension. 2005;46(5):1169–1174. doi: 10.1161/01.HYP.0000185148.27901.fe.
    1. Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2005;289(3):H1013–H1019. doi: 10.1152/ajpheart.00068.2005.
    1. Zhong JC, Huang DY, Yang YM, et al. Upregulation of angiotensin-converting enzyme 2 by All-trans retinoic acid in spontaneously hypertensive rats. Hypertension. 2004;11:11.
    1. Benjafield AV, Wang WY, Morris BJ. No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension. Am J Hypertens. 2004;17(7):624–628. doi: 10.1016/j.amjhyper.2004.02.022.
    1. Liu TB, Shang HP, Zhang KX, et al. Association of angiotensin I converting enzyme 2 gene polymorphism with essential hypertension in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(5):569–571.
    1. Zhong J, Yan Z, Liu D, et al. Association of angiotensin-converting enzyme 2 gene A/G polymorphism and elevated blood pressure in Chinese patients with metabolic syndrome. J Lab Clin Med. 2006;147(2):91–95. doi: 10.1016/j.lab.2005.10.001.
    1. Zisman LS, Keller RS, Weaver B, et al. Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation. 2003;108(14):1707–1712. doi: 10.1161/01.CIR.0000094734.67990.99.
    1. Goulter AB, Goddard MJ, Allen JC, Clark KL. ACE2 gene expression is up-regulated in the human failing heart. BMC Med. 2004;2(1):19. doi: 10.1186/1741-7015-2-19.
    1. Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J. 2005;26(4):369–375. doi: 10.1093/eurheartj/ehi114.
    1. Kittleson MM, Minhas KM, Irizarry RA, et al. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics. 2005;21(3):299–307. doi: 10.1152/physiolgenomics.00255.2004.
    1. Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47(4):718–726. doi: 10.1161/01.HYP.0000205833.89478.5b.
    1. Heusch G. Hibernating myocardium. Physiol Rev. 1998;78(4):1055–1085.
    1. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104(24):2981–2989.
    1. Murphy AM, Kogler H, Georgakopoulos D, et al. Transgenic mouse model of stunned myocardium. Science. 2000;287(5452):488–491. doi: 10.1126/science.287.5452.488.
    1. Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood. 1999;94(12):4177–4185.
    1. Guo K, Searfoss G, Krolikowski D, et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001;8(4):367–376. doi: 10.1038/sj.cdd.4400810.
    1. Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780–5785. doi: 10.1073/pnas.091415198.
    1. van Kats JP, Methot D, Paradis P, Silversides DW, Reudelhuber TL. Use of a biological peptide pump to study chronic peptide hormone action in transgenic mice. Direct and indirect effects of angiotensin II on the heart. J Biol Chem. 2001;276(47):44012–44017. doi: 10.1074/jbc.M106132200.
    1. Boehm M, Nabel EG. Angiotensin-converting enzyme 2—a new cardiac regulator. N Engl J Med. 2002;347(22):1795–1797. doi: 10.1056/NEJMcibr022472.
    1. Ward WF, Sharplin J, Franko AJ, Hinz JM. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice. Radiat Res. 1989;120(1):113–120.
    1. Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol. 2000;279(1):L143–L151.
    1. Li X, Rayford H, Uhal BD. Essential roles for angiotensin receptor AT1a in bleomycin-induced apoptosis and lung fibrosis in mice. Am J Pathol. 2003;163(6):2523–2530.
    1. Otsuka M, Takahashi H, Shiratori M, Chiba H, Abe S. Reduction of bleomycin induced lung fibrosis by candesartan cilexetil, an angiotensin II type 1 receptor antagonist. Thorax. 2004;59(1):31–38. doi: 10.1136/thx.2003.000893.
    1. Thannickal VJ, Flaherty KR, Martinez FJ, Lynch JP., 3rd Idiopathic pulmonary fibrosis: emerging concepts on pharmacotherapy. Expert Opin Pharmacother. 2004;5(8):1671–1686. doi: 10.1517/14656566.5.8.1671.
    1. McGrath DS, Foley PJ, Petrek M, et al. Ace gene I/D polymorphism and sarcoidosis pulmonary disease severity. Am J Respir Crit Care Med. 2001;164(2):197–201.
    1. Newman RA, Kimberly PJ, Stewart JA, Kelley J. Assessment of bleomycin lung toxicity using angiotensin-converting enzyme in pulmonary lavage. Cancer Res. 1980;40(10):3621–3626.
    1. Marshall RP, Webb S, Bellingan GJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166(5):646–650. doi: 10.1164/rccm.2108086.
    1. Danilczyk U, Eriksson U, Oudit GY, Penninger JM. Physiological roles of angiotensin-converting enzyme 2. Cell Mol Life Sci. 2004;61(21):2714–2719. doi: 10.1007/s00018-004-4241-6.
    1. Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300(5624):1394–1399. doi: 10.1126/science.1085952.
    1. Marra MA, Jones SJ, Astell CR, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300(5624):1399–1404. doi: 10.1126/science.1085953.
    1. Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;20:20.
    1. Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–564. doi: 10.1038/nature02463.
    1. Hogan RJ, Gao G, Rowe T, et al. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol. 2004;78(20):11416–11421. doi: 10.1128/JVI.78.20.11416-11421.2004.
    1. Feinberg H, Guo Y, Mitchell DA, Drickamer K, Weis WI. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem. 2005;280(2):1327–1335. doi: 10.1074/jbc.M409925200.
    1. Chan VS, Chan KY, Chen Y, et al. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet. 2006;38(1):38–46.
    1. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5(12):917–927. doi: 10.1038/nri1732.
    1. Lau YL, Peiris JS. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol. 2005;17(4):404–410. doi: 10.1016/j.coi.2005.05.009.
    1. Li SS, Cheng CW, Fu CL, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108(15):1798–1803. doi: 10.1161/01.CIR.0000094737.21775.32.
    1. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol. 1998;274(3 Pt 2):R577–R595.
    1. Wahl SM, Allen JB, Gartner S, et al. HIV-1 and its envelope glycoprotein down-regulate chemotactic ligand recept1ors and chemotactic function of peripheral blood monocytes. J Immunol. 1989;142(10):3553–3559.
    1. Oldstone MB, Lewicki H, Thomas D, et al. Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell. 1999;98(5):629–640. doi: 10.1016/S0092-8674(00)80050-1.
    1. Lakadamyali M, Rust MJ, Zhuang X. Endocytosis of influenza viruses. Microbes Infect. 2004;6(10):929–936. doi: 10.1016/j.micinf.2004.05.002.
    1. Ungchusak K, Auewarakul P, Dowell SF, et al. Probable person-to-person transmission of avian influenza A (H5N1) N Engl J Med. 2005;352(4):333–340. doi: 10.1056/NEJMoa044021.
    1. Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat Med. 2004;10(Suppl 12):S110–S121. doi: 10.1038/nm1142.
    1. Huentelman MJ, Grobe JL, Vazquez J, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol. 2005;90(5):783–790. doi: 10.1113/expphysiol.2005.031096.

Source: PubMed

3
Subscribe