Effect of Iron Depletion by Bloodletting vs. Observation on Oxidative Stress Biomarkers of Women with Functional Hyperandrogenism Taking a Combined Oral Contraceptive: A Randomized Clinical Trial

Manuel Luque-Ramírez, Andrés E Ortiz-Flores, María Ángeles Martínez-García, María Insenser, Alejandra Quintero-Tobar, Sara De Lope Quiñones, Elena Fernández-Durán, María Lía Nattero-Chávez, Francisco Álvarez-Blasco, Héctor Francisco Escobar-Morreale, Manuel Luque-Ramírez, Andrés E Ortiz-Flores, María Ángeles Martínez-García, María Insenser, Alejandra Quintero-Tobar, Sara De Lope Quiñones, Elena Fernández-Durán, María Lía Nattero-Chávez, Francisco Álvarez-Blasco, Héctor Francisco Escobar-Morreale

Abstract

Women with functional hyperandrogenism show both increased markers of oxidative stress and a mild iron overload. Combined oral contraceptives (COC) may worsen redox status in the general population. Since iron depletion ameliorates oxidative stress in other iron overload states, we aimed to address the changes in the redox status of these women as a consequence of COC therapy and of bloodletting, conducting a randomized, controlled, parallel, open-label clinical trial in 33 adult women with polycystic ovary syndrome or idiopathic hyperandrogenism. After three months of treatment with a COC, participants were randomized (1:1) to three scheduled bloodlettings or observation for another nine months. After taking a COC, participants showed a mild decrease in their plasma electrochemical antioxidant capacity, considering fast-acting antioxidants [MD: −1.51 (−2.43 to −0.60) μC, p = 0.002], and slow-acting antioxidants [MD: −1.90 (−2.66 to −1.14) μC, p < 0.001]. Women submitted to bloodletting showed a decrease in their non-enzymatic antioxidant capacity levels (NEAC) throughout the trial, whereas those individuals in the control arm showed a mild increase in these levels at the end of the study (Wilks’ λ: 0.802, F: 3.572, p = 0.041). Decreasing ferritin and plasma hemoglobin during the trial were associated with worse NEAC levels. COC may impair redox status in women with functional hyperandrogenism. Decreasing iron stores by scheduled bloodletting does not override this impairment.

Keywords: hyperandrogenism; iron; oxidative stress.

Conflict of interest statement

M.L.-R. has received consulting fees and honoraria for speaking from Novo Nordisk and Merck, and was involved in clinical trials supported by AstraZeneca, Cortendo AB, InsudPharma, and Neurocrine. A.E.O.-F. was involved in a clinical trial supported by Cortendo AB. M.L.N.-C. has received consulting fees and honoraria for speaking from Novo Nordisk and Sanofi Aventis, and was involved in clinical trials supported by AstraZeneca, Cortendo AB, Diamyd Medical, InsudPharma, and Neurocrine. F.A.-B. has received consulting fees and honoraria for speaking from Novo Nordisk, AstraZeneca, Menarini, and Lilly-Boehringer, and was involved in clinical trials supported by AstraZeneca and Diamyd Medical. E.F.-D. and A.Q.-T. were involved in clinical trials supported by AstraZeneca, Cortendo AB, Diamyd Medical, InsudPharma, and Neurocrine. H.F.E.-M. was involved in a clinical trial supported by AstraZeneca, and has received consulting fees from InsudPharma. All authors have read the journal’s authorship agreement and policy on disclosure of potential conflicts of interest, and no other potential conflict of interest are reported.

Figures

Figure 1
Figure 1
Flow chart of the study. The figure includes the numbers of participants randomly assigned to the arms of the study, those receiving the intended intervention, and the losses and exclusions, together with their reasons, occurring after randomization.
Figure 2
Figure 2
Short-term effects of combined oral contraceptive on oxidative stress biomarkers. The box indicates the 25th and 75th percentiles, the solid and short dashed lines within the box mark the median and mean, respectively. Whiskers below and above the box indicate the 10th and 90th percentiles. * Statistically significant change in mean values from month −3 to 0.
Figure 3
Figure 3
Changes in circulating ferritin in each arm of the trial throughout the study. Data are shown as mean of the differences and 95% CI.
Figure 4
Figure 4
Changes in oxidative stress biomarkers throughout the experimental phase of the trial. We show data as means (SEM) of the patients remaining at each visit of the trial, even though we conducted intention-to-treat statistical analyses. Data were submitted to a repeated-measures general linear model. † Statistically significant interaction between the visits and the arm of the study.
Figure 5
Figure 5
Changes in plasma non-enzymatic antioxidant activity throughout the experimental phase of the trial as a function of the changes in plasma ferritin and hemoglobin grouped by tertiles. We show data as means (SEM) of the patients remaining at each visit of the trial even though we conducted intention-to-treat statistical analyses. Data were submitted to a repeated-measures general linear model introducing the upper tertile (T3) vs. mid and lower tertiles (T1 + 2) as between-subjects factors. † Statistically significant interaction between the visits and tertile subgroups.

References

    1. Skiba M.A., Islam R.M., Bell R.J., Davis S.R. Understanding variation in prevalence estimates of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update. 2018;24:694–709. doi: 10.1093/humupd/dmy022.
    1. Murri M., Luque-Ramirez M., Insenser M., Ojeda-Ojeda M., Escobar-Morreale H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systematic review and meta-analysis. Hum. Reprod. Update. 2013;19:268–288. doi: 10.1093/humupd/dms059.
    1. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001.
    1. Bae Y.S., Oh H., Rhee S.G., Yoo Y.D. Regulation of reactive oxygen species generation in cell signaling. Mol. Cells. 2011;32:491–509. doi: 10.1007/s10059-011-0276-3.
    1. Snezhkina A.V., Kudryavtseva A.V., Kardymon O.L., Savvateeva M.V., Melnikova N.V., Krasnov G.S., Dmitriev A.A. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid. Med. Cell Longev. 2019;2019:6175804. doi: 10.1155/2019/6175804.
    1. Victor V.M., Rocha M., Bañuls C., Sanchez-Serrano M., Sola E., Gomez M., Hernandez-Mijares A. Mitochondrial complex I impairment in leukocytes from polycystic ovary syndrome patients with insulin resistance. J. Clin. Endocrinol. Metab. 2009;94:3505–3512. doi: 10.1210/jc.2009-0466.
    1. Hu M., Zhang Y., Guo X., Jia W., Liu G., Zhang J., Li J., Cui P., Sferruzzi-Perri A.N., Han Y., et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am. J. Physiol. Endocrinol. Metab. 2019;316:E794–E809. doi: 10.1152/ajpendo.00359.2018.
    1. Victor V.M., Rocha M., Bañuls C., Alvarez A., de Pablo C., Sanchez-Serrano M., Gomez M., Hernandez-Mijares A. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance. J. Clin. Endocrinol. Metab. 2011;96:3115–3122. doi: 10.1210/jc.2011-0651.
    1. González F., Sia C.L., Bearson D.M., Blari H.E. Hyperandrogenism induces a proinflammatory TNFα response to glucose ingestion in a receptor-dependent fashion. J. Clin. Endocrinol. Metab. 2014;99:E848–E854. doi: 10.1210/jc.2013-4109.
    1. Escobar-Morreale H.F., Luque-Ramírez M., González F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and metaanalysis. Fertil. Steril. 2011;95:1048–1058. doi: 10.1016/j.fertnstert.2010.11.036.
    1. González F., Considine R.V., Abdelhadi O.A., Acton A.J. Oxidative Stress in Response to Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2019;104:5360–5371. doi: 10.1210/jc.2019-00987.
    1. Malin S.K., Kirwan J.P., Sia C.L., González F. Glucose-stimulated oxidative stress in mononuclear cells is related to pancreatic β-cell dysfunction in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2014;99:322–329. doi: 10.1210/jc.2013-3177.
    1. Gonzalez F., Sia C.L., Shepard M.K., Rote N.S., Minium J. Hyperglycemia-induced oxidative stress is independent of excess abdominal adiposity in normal-weight women with polycystic ovary syndrome. Hum. Reprod. 2012;27:3560–3568. doi: 10.1093/humrep/des320.
    1. Zhu W., Han B., Fan M., Wang N., Wang H., Zhu H., Cheng T., Zhao S., Song H., Qiao J. Oxidative stress increases the 17,20-lyase-catalyzing activity of adrenal P450c17 through p38α in the development of hyperandrogenism. Mol. Cell Endocrinol. 2019;484:25–33. doi: 10.1016/j.mce.2019.01.020.
    1. Sun Y., Li S., Liu H., Bai H., Hu K., Zhang R., Liu Q., Fan P. Oxidative stress promotes hyperandrogenism by reducing sex hormone-binding globulin in polycystic ovary syndrome. Fertil. Steril. 2021;22:01806–01809. doi: 10.1016/j.fertnstert.2021.07.1203.
    1. Escobar-Morreale H.F., Luque-Ramírez M., Álvarez-Blasco F., Botella-Carretero J.I., Sancho J., San Millan J.L. Body iron stores are increased in overweight and obese women with polycystic ovary syndrome. Diabetes Care. 2005;28:2042–2044. doi: 10.2337/diacare.28.8.2042.
    1. Martínez-García M.A., Luque-Ramírez M., San-Millán J.L., Escobar-Morreale H.F. Body iron stores and glucose intolerance in premenopausal women: Role of hyperandrogenism, insulin resistance, and genomic variants related to inflammation, oxidative stress, and iron Metab.olism. Diabetes Care. 2009;32:1525–1530. doi: 10.2337/dc09-0420.
    1. Adamska A., Łebkowska A., Krentowska A., Adamski M., Kowalska I. The Association Between Serum Ferritin Concentration and Visceral Adiposity Estimated by Whole-Body DXA Scan in Women With Polycystic Ovary Syndrome. Front. Endocrinol. (Lausanne) 2019;10:873. doi: 10.3389/fendo.2019.00873.
    1. Fernández-Real J.M., Manco M. Effects of iron overload on chronic Metab.olic diseases. Lancet Diabetes Endocrinol. 2014;2:513–526. doi: 10.1016/S2213-8587(13)70174-8.
    1. Fernandez-Real J.M., Broch M., Ricart W., Casamitjana R., Gutierrez C., Vendrell J., Richart C. Plasma levels of the soluble fraction of tumor necrosis factor receptor 2 and insulin resistance. Diabetes. 1998;47:1757–1762. doi: 10.2337/diabetes.47.11.1757.
    1. Suárez-Ortegón M.F., McLachlan S., Price A.H., Fernández-Balsells M., Franch-Nadal J., Mata-Cases M., Barrot-de la Puente J., Mundet-Tudurí X., Mauricio D., Ricart W., et al. Decreased iron stores are associated with cardiovascular disease in patients with type 2 diabetes both cross-sectionally and longitudinally. Atherosclerosis. 2018;272:193–199. doi: 10.1016/j.atherosclerosis.2018.03.028.
    1. Balla J., Vercellotti G.M., Jeney V., Yachie A., Varga Z., Jacob H.S., Eaton J.W., Balla G. Heme, heme oxygenase, and ferritin: How the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid. Redox Signal. 2007;9:2119–2137. doi: 10.1089/ars.2007.1787.
    1. Rineau E., Gueguen N., Procaccio V., Geneviève F., Reynier P., Henrion D., Lasocki S. Iron Deficiency without Anemia Decreases Physical Endurance and Mitochondrial Complex I Activity of Oxidative Skeletal Muscle in the Mouse. Nutrients. 2021;13:1056. doi: 10.3390/nu13041056.
    1. Orme M.L. The third S.K. & F. Prize lecture, University of London, December 1981. The clinical pharmacology of oral contraceptive steroids. Br. J. Clin. Pharm. 1982;14:31–42.
    1. Stanczyk F.Z., Archer D.F., Bhavnani B.R. Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: Pharmacokinetics, pharmacodynamics and risk assessment. Contraception. 2013;87:706–727. doi: 10.1016/j.contraception.2012.12.011.
    1. Pincemail J., Vanbelle S., Gaspard U., Collette G., Haleng J., Cheramy-Bien J.P., Charlier C., Chapelle J.P., Giet D., Albert A., et al. Effect of different contraceptive methods on the oxidative stress status in women aged 40 48 years from the ELAN study in the province of Liege, Belgium. Hum. Reprod. 2007;22:2335–2343. doi: 10.1093/humrep/dem146.
    1. Cauci S., Xodo S., Buligan C., Colaninno C., Barbina M., Barbina G., Francescato M.P. Oxidative Stress Is Increased in Combined Oral Contraceptives Users and Is Positively Associated with High-Sensitivity C-Reactive Protein. Molecules. 2021;26:1070. doi: 10.3390/molecules26041070.
    1. Venter G., van der Berg C.L., van der Westhuizen F.H., Erasmus E. Health Status Is Affected, and Phase I/II Biotransformation Activity Altered in Young Women Using Oral Contraceptives Containing Drospirenone/Ethinyl Estradiol. Int J. Environ. Res. Public Health. 2021;18:10607. doi: 10.3390/ijerph182010607.
    1. Ortiz-Flores A.E., Martínez-García M., Nattero-Chávez L., Álvarez-Blasco F., Fernández-Durán E., Quintero-Tobar A., Escobar-Morreale H.F., Luque-Ramírez M. Iron Overload in Functional Hyperandrogenism: In a Randomized Trial, Bloodletting Does Not Improve Metabolic Outcomes. J. Clin. Endocrinol. Metab. 2021;19:e1559–e1573. doi: 10.1210/clinem/dgaa978.
    1. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L., Piltonen T., Norman R.J. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018;33:1602–1618. doi: 10.1093/humrep/dey256.
    1. Escobar-Morreale H.F., Carmina E., Dewailly D., Gambineri A., Kelestimur F., Moghetti P., Pugeat M., Qiao J., Wijeyaratne C.N., Witchel S.F., et al. Epidemiology, diagnosis and management of hirsutism: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome Society. Hum. Reprod. Update. 2013;19:146–170. doi: 10.1093/humupd/dms057.
    1. Templeton G.F. Approach for transforming continuous variables to normal: Implications and recommendations for IS research. Commun. Assoc. Inf. Syst. 2011;28 doi: 10.17705/1CAIS.02804.
    1. Zhang R., Liu H., Bai H., Zhang Y., Liu Q., Guan L., Fan P. Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome. Clin. Endocrinol. 2017;86:88–96. doi: 10.1111/cen.13171.
    1. González F., Rote N.S., Minium J., Kirwan J.P. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006;91:336–340. doi: 10.1210/jc.2005-1696.
    1. Dabravolski S.A., Nikiforov N.G., Eid A.H., Nedosugova L.V., Starodubova A.V., Popkova T.V., Bezsonov E.E., Orekhov A.N. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2021;22:3923. doi: 10.3390/ijms22083923.
    1. Escobar-Morreale H.F., Millán J.L. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol. Metab. 2007;18:266–272. doi: 10.1016/j.tem.2007.07.003.
    1. Liu S., Navarro G., Mauvais-Jarvis F. Androgen excess produces systemic oxidative stress and predisposes to beta-cell failure in female mice. PLoS ONE. 2010;5:e11302.
    1. Lobysheva I.I., van Eeckhoudt S., Dei Zotti F., Rifahi A., Pothen L., Beauloye C., Balligand J.L. Heme-nitrosylated hemoglobin and oxidative stress in women consuming combined contraceptives. Clinical application of the EPR spectroscopy. Free Radic. Biol. Med. 2017;108:524–532. doi: 10.1016/j.freeradbiomed.2017.03.039.
    1. Swanepoel A.C., Bester J., Emmerson O., Soma P., Beukes D., van Reenen M., Loots D.T., du Preez I. Serum Metab.olome Changes in Relation to Prothrombotic State Induced by Combined Oral Contraceptives with Drospirenone and Ethinylestradiol. Omics. 2020;24:404–414. doi: 10.1089/omi.2020.0009.
    1. Ruiz-Ramírez A., Ortiz-Balderas E., Cardozo-Saldaña G., Diaz-Diaz E., El-Hafidi M. Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin. Sci. 2014;126:19–29. doi: 10.1042/CS20130164.
    1. Fraga C.G., Oteiza P.I., Galleano M. In vitro measurements and interpretation of total antioxidant capacity. Biochim. Biophys. Acta. 2014;1840:931–934. doi: 10.1016/j.bbagen.2013.06.030.
    1. Rey Alonso S.C. Study of the Redox Balance in Cellular Lines: Influcence of Used Technology. Universidad de Oviedo; Oviedo, Spain: 2018.
    1. Kowalska K., Milnerowicz H. Pro/antioxidant status in young healthy women using oral contraceptives. Environ. Toxicol. Pharm. 2016;43:1–6. doi: 10.1016/j.etap.2016.02.006.
    1. Luque-Ramírez M., Mendieta-Azcona C., del Rey Sánchez J.M., Matíes M., Escobar-Morreale H.F. Effects of an antiandrogenic oral contraceptive pill compared with metformin on blood coagulation tests and endothelial function in women with the polycystic ovary syndrome: Influence of obesity and smoking. Eur. J. Endocrinol. 2009;160:469–480. doi: 10.1530/EJE-08-0725.
    1. Sharma G.S., Bhattacharya R., Singh L.R. Functional inhibition of redox regulated heme proteins: A novel mechanism towards oxidative stress induced by homocysteine. Redox Biol. 2021;46:102080. doi: 10.1016/j.redox.2021.102080.
    1. Luque-Ramírez M., Álvarez-Blasco F., Alpañés M., Escobar-Morreale H.F. Role of decreased circulating hepcidin concentrations in the iron excess of women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2011;96:846–852. doi: 10.1210/jc.2010-2211.
    1. Zhao H., Zhao Y., Li T., Li M., Li J., Li R., Liu P., Yu Y., Qiao J. Metab.olism alteration in follicular niche: The nexus among intermediary Metab.olism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic. Biol. Med. 2015;86:295–307. doi: 10.1016/j.freeradbiomed.2015.05.013.
    1. Utzschneider K.M., Kowdley K.V. Hereditary hemochromatosis and diabetes mellitus: Implications for clinical practice. Nat. Rev. Endocrinol. 2010;6:26–33. doi: 10.1038/nrendo.2009.241.
    1. Ong S.Y., Gurrin L.C., Dolling L., Dixon J., Nicoll A.J., Wolthuizen M., Wood E.M., Anderson G.J., Ramm G.A., Allen K.J., et al. Reduction of body iron in HFE-related haemochromatosis and moderate iron overload (Mi-Iron): A multicentre, participant-blinded, randomised controlled trial. Lancet Haematol. 2017;4:e607–e614. doi: 10.1016/S2352-3026(17)30214-4.
    1. Shizukuda Y., Bolan C.D., Nguyen T.T., Botello G., Tripodi D.J., Yau Y.Y., Waclawiw M.A., Leitman S.F., Rosing D.R. Oxidative stress in asymptomatic subjects with hereditary hemochromatosis. Am. J Hematol. 2007;82:249–250. doi: 10.1002/ajh.20743.
    1. Distante S., Eikeland J., Pawar T., Skinnes R., Høie K., You P., Mørkrid L., Eide L. Blood removal therapy in hereditary hemochromatosis induces a stress response resulting in improved genome integrity. Transfusion. 2016;56:1435–1441. doi: 10.1111/trf.13588.
    1. Kaito M., Iwasa M., Kobayashi Y., Fujita N., Tanaka H., Gabazza E.C., Adachi Y., Kojima Y., Nakagawa N., Watanabe S. Iron reduction therapy by phlebotomy reduces lipid peroxidation and oxidative stress in patients with chronic hepatitis C. J. Gastroenterol. 2006;41:921–922. doi: 10.1007/s00535-006-1871-5.
    1. Lainé F., Reymann J.M., Morel F., Langouët S., Perrin M., Guillygomarc’h A., Brissot P., Turmel V., Mouchel C., Pape D., et al. Effects of phlebotomy therapy on cytochrome P450 2e1 activity and oxidative stress markers in dysMetab.olic iron overload syndrome: A randomized trial. Aliment. Pharm. 2006;24:1207–1213. doi: 10.1111/j.1365-2036.2006.03116.x.
    1. Nagababu E., Gulyani S., Earley C.J., Cutler R.G., Mattson M.P., Rifkind J.M. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic. Res. 2008;42:824–829. doi: 10.1080/10715760802459879.
    1. Sies H. Total antioxidant capacity: Appraisal of a concept. J. Nutr. 2007;137:1493–1495. doi: 10.1093/jn/137.6.1493.
    1. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017;524:13–30. doi: 10.1016/j.ab.2016.10.021.
    1. Tsikas D., Schwedhelm E., Frölich J.C. Methodological considerations on the detection of 3-nitrotyrosine in the cardiovascular system. Circ. Res. 2002;90:E70. doi: 10.1161/.
    1. Martinez-Moral M.P., Kannan K. How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. Environ. Int. 2019;123:382–389. doi: 10.1016/j.envint.2018.12.009.
    1. Moore K., Roberts L.J., 2nd Measurement of lipid peroxidation. Free Radic. Res. 1998;28:659–671. doi: 10.3109/10715769809065821.

Source: PubMed

3
Subscribe