Multicentre, double-blind, randomised, sham-controlled trial of 10 khz high-frequency spinal cord stimulation for chronic neuropathic low back pain (MODULATE-LBP): a trial protocol

Adnan Al-Kaisy, Jonathan Royds, Stefano Palmisani, David Pang, Samuel Wesley, Rod S Taylor, Andrew Cook, Sam Eldabe, Lance McCracken, Rui Duarte, Jeremy Fairbank, Adnan Al-Kaisy, Jonathan Royds, Stefano Palmisani, David Pang, Samuel Wesley, Rod S Taylor, Andrew Cook, Sam Eldabe, Lance McCracken, Rui Duarte, Jeremy Fairbank

Abstract

Introduction: Chronic neuropathic low back pain (CNLBP) is a debilitating condition in which established medical treatments seldom alleviate symptoms. Evidence demonstrates that high-frequency 10 kHz spinal cord stimulation (SCS) reduces pain and improves health-related quality of life in patients with failed back surgery syndrome (FBSS), but evidence of this effect is limited in individuals with CNLBP who have not had surgery. The aim of this multicentre randomised trial is to assess the clinical and cost-effectiveness of 10 kHz SCS for this population.

Methods: This is a multicentre, double-blind, randomised, sham-controlled trial with a parallel economic evaluation. A total of 96 patients with CNLBP who have not had spinal surgery will be implanted with an epidural lead and a sham lead outside the epidural space without a screening trial. Patients will be randomised 1:1 to 10 kHz SCS plus usual care (intervention group) or to sham 10 kHz SCS plus usual care (control group) after receiving the full implant. The SCS devices will be programmed identically using a cathodal cascade. Participants will use their handheld programmer to alter the intensity of the stimulation as per routine practice. The primary outcome will be a 7-day daily pain diary. Secondary outcomes include the Oswestry Disability Index, complications, EQ-5D-5 L, and health and social care costs. Outcomes will be assessed at baseline (pre-randomisation) and at 1 month, 3 months and 6 months after device activation. The primary analyses will compare primary and secondary outcomes between groups at 6 months, while adjusting for baseline outcome scores. Incremental cost per quality-adjusted life year (QALY) will be calculated at 6 months and over the lifetime of the patient.

Discussion: The outcomes of this trial will inform clinical practice and healthcare policy on the role of high-frequency 10 kHz SCS for use in patients with CNLBP who have not had surgery.

Trial registration: Clinicaltrials.gov, NCT03470766. Registered on 20 March 2018.

Disclaimer: The views expressed here are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The NIHR had no role in the study design, writing of the manuscript or the decision to submit for publication.

Roles and responsibilities: AK, SP, DP, SW, RST, AC, SE, LM, RD and JF all contributed to the trial design and to securing trial funding. AK, JR, SP, DP, and SE are involved in the recruitment, the intervention and the follow-up. SW will perform data collection and analysis. RST will be responsible for the statistical analysis, and RD will be responsible for the health economic analysis. All authors read and approved the final manuscript.

Keywords: Spinal cord stimulation, Neuropathic pain, Chronic neuropathic low back pain, Neuromodulation.

Conflict of interest statement

AK has received receipt of honoraria from Nevro and is a stock shareholder in Micron Devices. DP has received travel expenses from Medtronic and Nevro outside the submitted work. SP reports grants and non-financial support from Saluda Medical, personal fees and non-financial support from Nevro outside the submitted work. RT is a paid consultant for Medtronic and Nevro. RD has received consultancy fees from Medtronic and Boston Scientific. SE, AC, LM, JR, and SW have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Consort diagram of MODULATE-LBP trial
Fig. 2
Fig. 2
Anterior-posterior X-ray position of desired lead location and diagrammatic illustration of ‘cascade’
Fig. 3
Fig. 3
Position of epidural lead (1), sham lead (2) and implantable Pulse Generator
Fig. 4
Fig. 4
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) diagram

References

    1. Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, et al. The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(6):968–974. doi: 10.1136/annrheumdis-2013-204428.
    1. Macfarlane GJ, Beasley M, Jones EA, Prescott GJ, Docking R, Keeley P, et al. The prevalence and management of low back pain across adulthood: results from a population-based cross-sectional study (the MUSICIAN study) Pain. 2012;153(1):27–32. doi: 10.1016/j.pain.2011.08.005.
    1. Forster M, Mahn F, Gockel U, Brosz M, Freynhagen R, Tolle TR, et al. Axial low back pain: one painful area--many perceptions and mechanisms. PLoS One. 2013;8(7):e68273. doi: 10.1371/journal.pone.0068273.
    1. Mafi JN, McCarthy EP, Davis RB, Landon BE. Worsening trends in the management and treatment of back pain. JAMA Intern Med. 2013;173(17):1573–1581. doi: 10.1001/jamainternmed.2013.8992.
    1. Breivik H, Eisenberg E, O'Brien T. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care. BMC Public Health. 2013;13:1229. doi: 10.1186/1471-2458-13-1229.
    1. Hong J, Reed C, Novick D, Happich M. Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine (Phila Pa 1976). 2013;38(1):75–82. doi: 10.1097/BRS.0b013e318276450f.
    1. Schmidt CO, Schweikert B, Wenig CM, Schmidt U, Gockel U, Freynhagen R, et al. Modelling the prevalence and cost of back pain with neuropathic components in the general population. Eur J Pain. 2009;13(10):1030–1035. doi: 10.1016/j.ejpain.2008.12.003.
    1. Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, et al. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet. 2018;391(10137):2368–2383. doi: 10.1016/S0140-6736(18)30489-6.
    1. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132(1–2):179–188. doi: 10.1016/j.pain.2007.07.028.
    1. Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee. Neuromodulation. 2014;17(6):515–550. doi: 10.1111/ner.12208.
    1. Taylor RS, Ryan J, O'Donnell R, Eldabe S, Kumar K, North RB. The cost-effectiveness of spinal cord stimulation in the treatment of failed back surgery syndrome. Clin J Pain. 2010;26(6):463–469. doi: 10.1097/AJP.0b013e3181daccec.
    1. Deer T, Pope J, Hayek S, Narouze S, Patil P, Foreman R, et al. Neurostimulation for the treatment of axial back pain: a review of mechanisms, techniques, outcomes, and future advances. Neuromodulation. 2014;17(Suppl 2):52–68. doi: 10.1111/j.1525-1403.2012.00530.x.
    1. Tiede J, Brown L, Gekht G, Vallejo R, Yearwood T, Morgan D. Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation. 2013;16(4):370–375. doi: 10.1111/ner.12032.
    1. Van Buyten JP, Al-Kaisy A, Smet I, Palmisani S, Smith T. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation. 2013;16(1):59–65. doi: 10.1111/ner.12006.
    1. Ahmed S, Yearwood T, De Ridder D, Vanneste S. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev Med Devices. 2018;15(1):61–70. doi: 10.1080/17434440.2018.1418662.
    1. Al-Kaisy A, Van Buyten JP, Smet I, Palmisani S, Pang D, Smith T. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med. 2014;15(3):347–354. doi: 10.1111/pme.12294.
    1. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP) Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S240–S252. doi: 10.1002/acr.20543.
    1. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Novel 10-kHz High-frequency therapy (HF10 Therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123(4):851–860. doi: 10.1097/ALN.0000000000000774.
    1. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, et al. Comparison of 10-kHz High-Frequency and Traditional Low-Frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: 24-Month Results From a Multicenter, Randomized, Controlled Pivotal Trial. Neurosurgery. 2016;79(5):667–677. doi: 10.1227/NEU.0000000000001418.
    1. Al-Kaisy A, Palmisani S, Smith TE, Pang D, Lam K, Burgoyne W, et al. 10 kHz High-Frequency Spinal Cord Stimulation for Chronic Axial Low Back Pain in Patients With No History of Spinal Surgery: A Preliminary, Prospective, Open Label and Proof-of-Concept Study. Neuromodulation. 2017;20(1):63–70. doi: 10.1111/ner.12563.
    1. Al-Kaisy A, Palmisani S, Smith TE, Carganillo R, Houghton R, Pang D, et al. Long-term improvements in chronic axial low back pain patients without previous spinal surgery: a cohort analysis of 10-khz high-frequency spinal cord stimulation over 36 months. Pain Med. 2018;19(6):1219–1226. doi: 10.1093/pm/pnx237.
    1. Quessy SN, Rowbotham MC. Placebo response in neuropathic pain trials. Pain. 2008;138(3):479–483. doi: 10.1016/j.pain.2008.06.024.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Freynhagen R, Baron R, Gockel U, Tolle TR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22(10):1911–1920. doi: 10.1185/030079906X132488.
    1. Weinand ME, Madhusudan H, Davis B, Melgar M. Acute vs. prolonged screening for spinal cord stimulation in chronic pain. Neuromodulation. 2003;6(1):15–19. doi: 10.1046/j.1525-1403.2003.03002.x.
    1. Eldabe S, Buchser E, Duarte RV. Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature. Pain Med. 2015;17(2):325–336.
    1. Turk DC, Dworkin RH, Allen RR, Bellamy N, Brandenburg N, Carr DB, et al. Core outcome domains for chronic pain clinical trials: IMMPACT recommendations. Pain. 2003;106(3):337–345. doi: 10.1016/j.pain.2003.08.001.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.

Source: PubMed

3
Subscribe