Effects of dexmedetomidine versus ketorolac as local anesthetic adjuvants on the onset and duration of infraclavicular brachial plexus block

Alireza Mirkheshti, Asadollah Saadatniaki, Alireza Salimi, Alireza Manafi Rasi, Elham Memary, Habiballah Yahyaei, Alireza Mirkheshti, Asadollah Saadatniaki, Alireza Salimi, Alireza Manafi Rasi, Elham Memary, Habiballah Yahyaei

Abstract

Background: Infraclavicular brachial plexus block is an appropriate approach for distal arm and forearm surgeries. Local anesthetic adjuvant agents are used to improve the quality of nerve blocks. Dexmedetomidine and ketorolac are two different types of adjuvants, which have been used in some studies.

Objectives: The purpose of this study was to examine the effects of dexmedetomidine and ketorolac as local anesthetic adjuvants on the onset and duration of infraclavicular brachial plexus block under ultrasound guide technique.

Patients and methods: In a clinical trial study, 111 ASA class I and II patients who were candidates for elective distal arm and forearm surgeries under ultrasound guided infraclavicular brachial plexus block divided into three 37 patient groups. In dexmedetomidine group, 25 mL of lidocaine 1.5% plus 4 ml of normal saline and 100 mcg of dexmedetomidine was injected. Ketorolac group received 25 mL of Lidocaine 1.5% plus 5 mL of ketorolac, and placebo group received 25 mL of lidocaine 1.5% plus 5 mL of normal saline as local anesthetic solution. Sensory and motor onset blocks, duration of sensory and motor blocks and first time to analgesic request and hemodynamic parameters were all recorded.

Results: There were no significant differences in sensory block onset between three groups (P = 0.177). Motor block onset was statistically less in dexmedetomidine compared to ketorolac and placebo groups (both Ps < 0.001). Sensory block duration in dexmedetomidine group was significantly longer than ketorolac and placebo groups (both Ps < 0.001). Motor block duration in dexmedetomidine group was significantly longer than ketorolac and placebo groups (both Ps < 0.001). Time to first analgesic request after the procedures was longer in ketorolac compared to dexmedetomidine and placebo groups (P = 0.016, P < 0.001 respectively), but it was longer in dexmedetomidine compared to placebo group (P = 0.003). The differences of diastolic blood pressure in-between the 5th to 140th minutes after local anesthetic injection among the 3 groups were statistically significant and dexmedetomidine group shows the most reduction in diastolic blood pressure (P < 0.001). Dexmedetomidine showed the lowest mean arterial pressure (P = 0.016) and heart rate in dexmedetomidine group was significantly lower than ketorolac and placebo groups (P = 0.043).

Conclusions: Our study showed that dexmedetomidine had better effects on sensory and motor block duration and motor block onset in comparison with ketorolac, as lidocaine adjuvants in infraclavicular brachial plexus block were present in both protocols. However, the first time to analgesic request by ketorolac was longer than dexmedetomidine.

Keywords: Dexmedtomidine; Infraclavicular Brachial Plexus; Ketorolac.

Figures

Figure 1.. Consort Diagram Showing the Flow…
Figure 1.. Consort Diagram Showing the Flow of Participants
Figure 2.. Mean Arterial Blood Pressure in…
Figure 2.. Mean Arterial Blood Pressure in Three Group
Figure 3.. Mean Heart rate Between Three…
Figure 3.. Mean Heart rate Between Three Groups

References

    1. Memis D, Turan A, Karamanlioglu B, Pamukcu Z, Kurt I. Adding dexmedetomidine to lidocaine for intravenous regional anesthesia. Anesth Analg. 2004;98(3):835–40.
    1. Esmaoglu A, Yegenoglu F, Akin A, Turk CY. Dexmedetomidine added to levobupivacaine prolongs axillary brachial plexus block. Anesth Analg. 2010;111(6):1548–51. doi: 10.1213/ANE.0b013e3181fa3095.
    1. Kanazi GE, Aouad MT, Jabbour-Khoury SI, Al Jazzar MD, Alameddine MM, Al-Yaman R, et al. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anaesthesiol Scand. 2006;50(2):222–7. doi: 10.1111/j.1399-6576.2006.00919.x.
    1. Gandhi R, Shah A, Patel I. Use of dexmedetomidine along with bupivacaine for brachial plexus block. National J Med Res. 2012;2(1):67–9.
    1. Esmaoglu A, Mizrak A, Akin A, Turk Y, Boyaci A. Addition of dexmedetomidine to lidocaine for intravenous regional anaesthesia. Eur J Anaesthesiol. 2005;22(6):447–51.
    1. Abdallah FW, Brull R. Facilitatory effects of perineural dexmedetomidine on neuraxial and peripheral nerve block: a systematic review and meta-analysis. Br J Anaesth. 2013;110(6):915–25. doi: 10.1093/bja/aet066.
    1. Reinhart DJ, Stagg KS, Walker KG, Wang WP, Parker CM, Jackson HH, et al. Postoperative analgesia after peripheral nerve block for podiatric surgery: clinical efficacy and chemical stability of lidocaine alone versus lidocaine plus ketorolac. Reg Anesth Pain Med. 2000;25(5):506–13. doi: 10.1053/rapm.2000.7624.
    1. Fritsch G, Danninger T, Allerberger K, Tsodikov A, Felder TK, Kapeller M, et al. Dexmedetomidine added to ropivacaine extends the duration of interscalene brachial plexus blocks for elective shoulder surgery when compared with ropivacaine alone: a single-center, prospective, triple-blind, randomized controlled trial. Reg Anesth Pain Med. 2014;39(1):37–47. doi: 10.1097/AAP.0000000000000033.
    1. Kaygusuz K, Kol IO, Duger C, Gursoy S, Ozturk H, Kayacan U, et al. Effects of adding dexmedetomidine to levobupivacaine in axillary brachial plexus block. Curr Ther Res Clin Exp. 2012;73(3):103–11. doi: 10.1016/j.curtheres.2012.03.001.
    1. Aghdashi MM, Dehghan K, Shokohi S, Shafagh S. Unusually prolonged motor and sensory block following single injection ultrasound-guided infraclavicular block with bupivacaine and dexamethasone. Anesth Pain Med. 2013;3(2):260–2. doi: 10.5812/aapm.10583.
    1. Ammar AS, Mahmoud KM. Ultrasound-guided single injection infraclavicular brachial plexus block using bupivacaine alone or combined with dexmedetomidine for pain control in upper limb surgery: A prospective randomized controlled trial. Saudi J Anaesth. 2012;6(2):109–14. doi: 10.4103/1658-354X.97021.
    1. Al-Mustafa MM, Abu-Halaweh SA, Aloweidi AS, Murshidi MM, Ammari BA, Awwad ZM, et al. Effect of dexmedetomidine added to spinal bupivacaine for urological procedures. Saudi Med J. 2009;30(3):365–70.
    1. Eid H, Shafie M, Youssef H. Dose-related prolongation of hyperbaric bupivacaine spinal anesthesia by dexmedetomidine. Ain Shams J Anesthesiol. 2011;4:83–95.
    1. Shukla D, Verma A, Agarwal A, Pandey HD, Tyagi C. Comparative study of intrathecal dexmedetomidine with intrathecal magnesium sulfate used as adjuvants to bupivacaine. J Anaesthesiol Clin Pharmacol. 2011;27(4):495–9. doi: 10.4103/0970-9185.86594.
    1. Budnyuk , Qureshi , Marukhnyak , Tchuev, Basenko. Use of Ketorolac as adjuvant in brachial plexus block with bupivacaine. Eur J Anaesthesiol. 2006;23:123. doi: 10.1097/00003643-200606001-00438.
    1. Gupta R, Bogra J, Verma R, Kohli M, Kushwaha JK, Kumar S. Dexmedetomidine as an intrathecal adjuvant for postoperative analgesia. Indian J Anaesth. 2011;55(4):347–51. doi: 10.4103/0019-5049.84841.
    1. Camu F, Van Overberge L, Bullingham R, Lloyd J. Hemodynamic effects of two intravenous doses of ketorolac tromethamine compared with morphine. Pharmacotherapy. 1990;10(6 ( Pt 2)):122S–6S.
    1. Konakci S, Adanir T, Yilmaz G, Rezanko T. The efficacy and neurotoxicity of dexmedetomidine administered via the epidural route. Eur J Anaesthesiol. 2008;25(5):403–9. doi: 10.1017/S0265021507003079.
    1. Brummett CM, Norat MA, Palmisano JM, Lydic R. Perineural administration of dexmedetomidine in combination with bupivacaine enhances sensory and motor blockade in sciatic nerve block without inducing neurotoxicity in rat. Anesthesiology. 2008;109(3):502–11. doi: 10.1097/ALN.0b013e318182c26b.
    1. Shankar H, Simhan S. Transient neuronal injury followed by intravascular injection during an ultrasound guided stellate ganglion block. Anesth Pain Med. 2013;2(3):134–7. doi: 10.5812/aapm.7823.
    1. Gauss A, Tugtekin I, Georgieff M, Dinse-Lambracht A, Keipke D, Gorsewski G. Incidence of clinically symptomatic pneumothorax in ultrasound-guided infraclavicular and supraclavicular brachial plexus block. Anaesthesia. 2014;69(4):327–36. doi: 10.1111/anae.12586.

Source: PubMed

3
Subscribe