A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity

Nicholas D Leigh, Guanglin Bian, Xilai Ding, Hong Liu, Semra Aygun-Sunar, Lyudmila G Burdelya, Andrei V Gudkov, Xuefang Cao, Nicholas D Leigh, Guanglin Bian, Xilai Ding, Hong Liu, Semra Aygun-Sunar, Lyudmila G Burdelya, Andrei V Gudkov, Xuefang Cao

Abstract

Toll-like receptor (TLR) mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK) cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+) T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+) and CD11c(+) cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.

Conflict of interest statement

Competing Interests: The authors have read the journal’s policy and have the following conflicts: Lyudmila Burdelya and Andrei Gudkov are paid consultants of Cleveland BioLabs, Inc. and Andrei Gudkov is a shareholder of Cleveland BioLabs, Inc. The other authors have no conflict of interest. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and material.

Figures

Figure 1. CBLB502 enhances the ability of…
Figure 1. CBLB502 enhances the ability of splenocytes to control tumor growth in vitro.
(A) SCCVII (a tumor line known to express TLR5 mRNA), A20 parental, luciferase-expressing, and RMAS parental and luciferase-expressing tumor cells were analyzed for TLR5 mRNA expression via RT-PCR. GAPDH was used as an internal loading control. (B) 2000 luciferase-expressing RMAS or A20 cells were cultured alone in 1 ml of complete media or co-cultured with 6×106 C57BL/6 or BALB/c splenocytes, respectively. At 0 hr, the cells were treated with 10 µl (10 µg/mL) CBLB502 or media diluent. Tumor burden was measured by bioluminescence imaging after 72 hrs. Two tailed t-tests were used to determine significance (*P<0.05, **P<0.01). Shown are representative data from three independent experiments with similar results.
Figure 2. CBLB502 stimulates NK cell- and…
Figure 2. CBLB502 stimulates NK cell- and perforin-dependent tumor immunity.
(A) Kaplan-Meier survival curve of WT C57BL/6 mice injected intravenously (IV) RMAS cells. Mice were treated with subcutaneous (SC) injections of either CBLB502 or PBS as described in Materials and Methods (PBS n = 8, CBLB502 n = 12). (B) Kaplan-Meier survival curve of WT C57BL/6 mice that were non-depleted or given either anti-CD8α antibody or anti-asialo GM1 antibody three days prior to IV injection with RMAS cells. PBS (n = 8), non-depleted CBLB502 (n = 12), NK depleted PBS (n = 8), NK depleted CBLB502 (n = 8), CD8 depleted PBS (n = 8), CD8 depleted CBLB502 (n = 8). (C) Peripheral blood was collected via eye bleeding 2 weeks after depletion with anti-asialo GM1 or anti-CD8α and the percentage of NK1.1+CD3− and CD3+CD8+ T cells, respectively, were analyzed (n = 8 mice/group). (D) Kaplan-Meier survival curve of WT CBLB502 (n = 27), WT PBS (n = 27), Prf1−/− CBLB502 (n = 15), Prf1−/− PBS (n = 14). All asterisk (*) represent statistical significance as determined by Log-rank (Mantel-Cox) test versus non-depleted PBS control group (*P<0.05). All data shown are representative of one of at least three individual experiments, or data combined from multiple experiments.
Figure 3. CBLB502 treatment stimulates CD8 +…
Figure 3. CBLB502 treatment stimulates CD8+ T cell-dependent tumor immunity.
(A) Tumor burden measured by bioluminescence imaging in BALB/c mice that were either non-depleted or given anti-CD8α antibody 3 days prior to IV inoculation with A20-luciferase expressing cells. Four different groups CBLB502 (n = 8), PBS (n = 8), CD8 depletion CBLB502 (n = 7) and CD8 depletion PBS (n = 8) were treated with PBS or CBLB502. (B) Kaplan-Meier survival curve of BALB/c mice from the experiment described in panel A. Data are combined from 2 of 3 individual experiments. (C) To confirm depletions of CD8+ T cells, peripheral blood was harvested via eye bleed day 16 after depletion and the percentage of CD3+CD8+ T cells in peripheral blood leukocytes was analyzed (n = 3–4 mice/group). Two tailed t-tests were performed to evaluate significance (**P<0.01). Shown as mean ± SD. Statistical analysis of survival was performed by Log-rank (Mantel-Cox) test (*P<0.05) with all groups being compared to PBS-treated non-depleted cohort.
Figure 4. CD11b + CD11c − and…
Figure 4. CD11b+ CD11c− and CD11b+ CD11c+ accessory cells, but not NK or T lymphocytes, directly respond to CBLB502 treatment.
Nuclear translocation of the NFκB p65 subunit was used to evaluate TLR5 expression and functionality. Splenocytes were treated with 10 ng/mL TNF-α, 100 ng/mL LPS, 100 ng/mL CBLB502 or PBS for 1 hr. (A) Splenocytes were stained for CD4, CD8, or NK1.1 along with CD3. After cell surface staining, cells were permeabilized and stained intracellularly for NFκB p65. Target populations were then gated as CD3+CD4+, CD3+CD8+ and CD3−NK1.1+ and similarity score between DAPI and the FITC-labeled NFκB was measured. (B) Splenocytes were stained for CD11b, CD11c and NFκB as described in panel A. Target populations were then gated as CD11b+CD11c− or CD11b+CD11c+ to quantitate the similarity score. (C) Representative images at 40× magnification of NK1.1+CD3− cells and CD11b+ CD11c− cells treated with PBS, TNF-α, LPS, or CBLB502. Two tailed t-tests were used to determine significance versus PBS-treated control samples (*P<0.05). Data are representative from one of least three experiments.
Figure 5. CD80 and CD86 are up-regulated…
Figure 5. CD80 and CD86 are up-regulated in vivo after CBLB502 treatment in a TLR5 dependent manner.
WT or TLR5−/− C57BL/6 mice were injected s.c. with 1 µg CBLB502, 1 µg flagellin, or equivalent volume of PBS. 24 h post-injection splenocytes were harvested and stained for flow cytometry with CD11b, CD11c, CD80 and CD86 antibodies. For LPS injections, 10 µg LPS was injected intraperitoneally and splenocytes were harvested 6 hours later and stained with the aforementioned antibodies immediately. (A) CD80 expression on CD11b+CD11c− and CD11b+CD11c+ cells from WT and TLR5−/− mice after indicated treatments. (B) CD86 expression on these same cell subsets. Two tailed t-tests were used to determine significance versus PBS-treated controls (**P<0.01, n = 3–6 mice per group). Data are representative from one of least three experiments.

References

    1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680.
    1. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045.
    1. Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14: 2592–2603.
    1. Lonsdorf AS, Kuekrek H, Stern BV, Boehm BO, Lehmann PV, et al. (2003) Intratumor CpG-oligodeoxynucleotide injection induces protective antitumor T cell immunity. J Immunol 171: 3941–3946.
    1. Chicoine MR, Zahner M, Won EK, Kalra RR, Kitamura T, et al. (2007) The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4. Neurosurgery 60: 372–380 discussion 381.
    1. Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, et al. (2006) Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 36: 2807–2816.
    1. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103.
    1. Eaves-Pyles T, Murthy K, Liaudet L, Virag L, Ross G, et al. (2001) Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166: 1248–1260.
    1. Honko AN, Sriranganathan N, Lees CJ, Mizel SB (2006) Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 74: 1113–1120.
    1. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT (2002) Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169: 3914–3919.
    1. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, et al. (2006) Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol 176: 6624–6630.
    1. Bohnhorst J, Rasmussen T, Moen SH, Flottum M, Knudsen L, et al. (2006) Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 20: 1138–1144.
    1. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, et al. (2011) Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 71: 2466–2475.
    1. Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, et al. (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320: 226–230.
    1. Ding X, Bian G, Leigh ND, Qiu J, McCarthy PL, et al. (2012) A TLR5 agonist enhances CD8(+) T cell-mediated graft-versus-tumor effect without exacerbating graft-versus-host disease. J Immunol 189: 4719–4727.
    1. Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, et al. (2007) Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26: 798–811.
    1. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, et al. (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27: 635–646.
    1. Gross S, Piwnica-Worms D (2005) Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods 2: 607–614.
    1. Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, et al. (2012) Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 83: 228–234.
    1. Maguire O, Collins C, O’Loughlin K, Miecznikowski J, Minderman H (2011) Quantifying nuclear p65 as a parameter for NF-kappaB activation: Correlation between ImageStream cytometry, microscopy, and Western blot. Cytometry A 79: 461–469.
    1. George TC, Fanning SL, Fitzgerald-Bocarsly P, Medeiros RB, Highfill S, et al. (2006) Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 311: 117–129.
    1. Kaufman DS, Schoon RA, Leibson PJ (1993) MHC class I expression on tumor targets inhibits natural killer cell-mediated cytotoxicity without interfering with target recognition. J Immunol 150: 1429–1436.
    1. Nishikado H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H (2011) NK cell-depleting anti-asialo GM1 antibody exhibits a lethal off-target effect on basophils in vivo. J Immunol 186: 5766–5771.
    1. Smyth MJ, Kelly JM, Baxter AG, Korner H, Sedgwick JD (1998) An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J Exp Med 188: 1611–1619.
    1. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A 97: 2731–2736.
    1. Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol 11: 645–657.
    1. Glimcher LH, Kim KJ, Green I, Paul WE (1982) Ia antigen-bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells. J Exp Med 155: 445–459.
    1. Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, et al. (2006) Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 7: 868–874.
    1. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168: 554–561.
    1. Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, et al. (2003) Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol 33: 1465–1470.
    1. Lyakh LA, Koski GK, Telford W, Gress RE, Cohen PA, et al. (2000) Bacterial lipopolysaccharide, TNF-alpha, and calcium ionophore under serum-free conditions promote rapid dendritic cell-like differentiation in CD14+ monocytes through distinct pathways that activate NK-kappa B. J Immunol. 165: 3647–3655.
    1. Barr TA, Brown S, Ryan G, Zhao J, Gray D (2007) TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur J Immunol 37: 3040–3053.
    1. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, et al. (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211: 81–92.
    1. Dienz O, Rincon M (2009) The effects of IL-6 on CD4 T cell responses. Clin Immunol 130: 27–33.
    1. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9: 57–63.
    1. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54: 526–535.
    1. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, et al. (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res 64: 5850–5860.
    1. Tsujimoto H, Uchida T, Efron PA, Scumpia PO, Verma A, et al. (2005) Flagellin enhances NK cell proliferation and activation directly and through dendritic cell-NK cell interactions. J Leukoc Biol 78: 888–897.
    1. Salazar-Gonzalez RM, Srinivasan A, Griffin A, Muralimohan G, Ertelt JM, et al. (2007) Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. J Immunol 179: 6169–6175.
    1. Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, et al. (2004) Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172: 6922–6930.
    1. Burdelya LG, Brackett CM, Kojouharov B, Gitlin, II, Leonova KI, et al. (2013) Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci U S A 110: E1857–E1866.
    1. Kim KJ, Kanellopoulos-Langevin C, Merwin RM, Sachs DH, Asofsky R (1979) Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol 122: 549–554.
    1. Faham A, Altin JG (2010) Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol 185: 1744–1754.
    1. Garaude J, Kent A, van Rooijen N, Blander JM (2012) Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses. Sci Transl Med 4: 120ra116.
    1. Bates JT, Graff AH, Phipps JP, Grayson JM, Mizel SB (2011) Enhanced antigen processing of flagellin fusion proteins promotes the antigen-specific CD8+ T cell response independently of TLR5 and MyD88. J Immunol 186: 6255–6262.
    1. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, et al. (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198: 1563–1572.

Source: PubMed

3
Subscribe