Treatment of Diabetic Macular Edema with Aflibercept and Micropulse Laser (DAM Study)

Keyvan Koushan, Arshia Eshtiaghi, Pauline Fung, Alan R Berger, David R Chow, Keyvan Koushan, Arshia Eshtiaghi, Pauline Fung, Alan R Berger, David R Chow

Abstract

Purpose: To investigate the safety and efficacy of micropulse (MP) macular laser in combination with intravitreal aflibercept for the treatment of center-involved diabetic macular edema (CI-DME).

Methods: A single-blind prospective randomized controlled pilot trial was performed. In total, 30 eyes of 30 patients with CI-DME and best corrected visual acuity (BCVA) between, and including, 20/30 and 20/400 were enrolled. Enrolled eyes were randomized to 2 groups. Group 1 received intravitreal aflibercept injections (IVT-AFL) with sham laser. Group 2 received IVT-AFL with MP laser. Both groups were followed every 4 weeks for 48 weeks and retreatment was performed on pro re nata basis according to preset criteria. The main outcome measure was the average number of intravitreal injections for each group at 48 weeks. Secondary outcome measures included changes in BCVA and central macular thickness (CMT) at 24 and 48 weeks.

Results: The average number of intravitreal injections at 48 weeks was similar between the groups (8.5±3.3 in Group 1 vs 7.9±3.6 in Group 2, p=0.61). After 48 weeks, both groups demonstrated an improvement in BCVA and CMT. However, the difference in improvement between the groups was not statistically significant (p=0.18 for BCVA and p=0.57 for CMT).

Conclusion: Intravitreal injections of aflibercept led to improvements in BCVA and CMT at 24 and 48 weeks. Addition of MP laser to eyes in group 2 did not offer additional benefit in reducing treatment burden or improving CMT. Eyes that received MP laser showed a numerically greater improvement in BCVA, although this was not statistically significant.

Clinicaltrialsgov identifier: NCT03143192 March 8, 2017.

Keywords: anti-VEGF; diabetic macular edema; micropulse laser; visual acuity.

Conflict of interest statement

The authors have no conflicts of interest to declare in this work.

© 2022 Koushan et al.

Figures

Figure 1
Figure 1
Average best corrected visual acuity of treated eyes in both groups.
Figure 2
Figure 2
Average central macular thickness of treated eyes in both groups.

References

    1. Romero-Aroca P. Managing diabetic macular edema: the leading cause of diabetes blindness. World J Diabetes. 2011;2:98. doi:10.4239/wjd.v2.i6.98
    1. Korobelnik JF, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014;121:2247–2254. doi:10.1016/j.ophtha.2014.05.006
    1. Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two Phase III trials: RISE and RIDE. Ophthalmology. 2013;120:2013–2022. doi:10.1016/j.ophtha.2013.02.034
    1. Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema: the RESTORE extension study. Ophthalmology. 2014;121:1045–1053. doi:10.1016/j.ophtha.2013.11.041
    1. Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE study): a 12-month, randomized, controlled, double-masked, multicenter Phase II study. Diabetes Care. 2010;33:2399–2405. doi:10.2337/dc10-0493
    1. Elman MJ, Ayala A, Bressler NM, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122:375–381. doi:10.1016/j.ophtha.2014.08.047
    1. Friberg TR, Karatza EC. Treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser. Ophthalmology. 1997;104:2030–2038. doi:10.1016/S0161-6420(97)30061-X
    1. Scholz P, Altay L, Fauser S. A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders. Adv Ther. 2017;34:1528–1555. doi:10.1007/s12325-017-0559-y
    1. Sivaprasad S, Elagouz M, McHugh D, Shona O, Dorin G. Micropulsed Diode Laser Therapy: evolution and Clinical Applications. Surv Ophthalmol. 2010;55:516–530. doi:10.1016/j.survophthal.2010.02.005
    1. Laursen ML, Moeller F, Sander B, Sjoelie AK. Subthreshold micropulse diode laser treatment in diabetic macular oedema. Br J Ophthalmol. 2004;88:1173–1179. doi:10.1136/bjo.2003.040949
    1. Inagaki K, Ohkoshi K, Ohde S, Deshpande GA, Ebihara N, Murakami A. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema. Jpn J Ophthalmol. 2015;59:21–28. doi:10.1007/s10384-014-0361-1
    1. Mansouri A, Sampat KM, Malik KJ, Steiner JN, Glaser BM. Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness. Eye. 2014;28:1418–1424. doi:10.1038/eye.2014.264
    1. Kwon YH, Lee DK, Kwon OW. The short-term efficacy of subthreshold Micropulse yellow (577-nm) laser photocoagulation for diabetic macular edema. Korean J Ophthalmol. 2014;28:379. doi:10.3341/kjo.2014.28.5.379
    1. Luttrull JK, Sinclair SH. Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good visual acuity. Retina. 2014;34:2010–2020. doi:10.1097/IAE.0000000000000177
    1. Valera-Cornejo DA, García-Roa M, Quiroz-Mendoza J, et al. Micropulse laser in patients with refractory and treatment-naïve center–involved diabetic macular edema: short terms visual and anatomic outcomes. Ther Adv Ophthalmol. 2021;13:251584142097911. doi:10.1177/2515841420979112
    1. Passos RM, Malerbi FK, Rocha M, Maia M, Farah ME. Real-life outcomes of subthreshold laser therapy for diabetic macular edema. Int J Retin Vitr. 2021;7. doi:10.1186/s40942-020-00268-3.

Source: PubMed

3
Subscribe