Endometriosis, a disease of the macrophage

Annalisa Capobianco, Patrizia Rovere-Querini, Annalisa Capobianco, Patrizia Rovere-Querini

Abstract

Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularized endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone marrow-derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload) in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

Keywords: Tie-2 expressing macrophages; alternatively activated macrophages; angiogenesis; endometriosis; hypoxia; iron; phagocytosis.

Figures

FIGURE 1
FIGURE 1
Macrophages come in different flavors. Microbial components such as lipopolysaccharide (LPS) and/or cytokines such as IFN-γ or GM-CSF elicit conventionally activated macrophages. These cells secrete inflammatory cytokines and generate molecules involved in the anti-bacterial response, such as reactive oxygen species (ROS). Treatment with different cytokines like IL-4 and/or IL-13, IL-10 and/or M-CSF supports the activation of alternative activated macrophages. Local hypoxia, possibly in conjunction with chemotactic signals such as CXCL12 and/or DAMPs, such as HMGB1, recruit from the blood precursors that yield Tie-expressing macrophages in the inflamed tissues. The expression of specific arrays of membrane receptors and the generation of soluble and gaseous messengers reflect the macrophage activation programs. LPS, lipopolysaccharide; IFN-γ, interferon-γ; GM-CSF, granulocyte macrophage-colony stimulating factor; M-CSF, macrophage-colony stimulating factor; MHCII, major histocompatibility complex class II; CD163, haptoglobin–hemoglobin complex receptor; CD206, mannose receptor; TGF-β, transforming growth factor β; PGE2, prostaglandin E2; ROS, reactive oxygen species.
FIGURE 2
FIGURE 2
Macrophages in experimental and human endometriosis. Endometrial fragments (maximal diameter <1 mm) derived from estradiol benzoate-treated mice (A) injected intra-peritoneally yield endometriotic lesions (B) that can be excised and processed for disease assessment (C) or immunohistochemical evaluation (D–G). CD68+ macrophages are abundant in human and experimental lesions (D,E). Most macrophages within human lesions express markers of alternative activation, such as the hemoglobin/haptoglobin CD163 scavenger receptor (F). CD163+ (green) vWF- (blue) pro-angiogenic Tie2-expressing macrophages surround the neoformed vessels (G).
FIGURE 3
FIGURE 3
Macrophages drive endometriosis. Endometrial cells reach the peritoneal cavity as a consequence of retrograde menstruation. The recruitment of macrophages at the site of endometrial cell engraftment is a limiting step for the lesion to organize and to growth. Local hypoxia and the production of chemokines play a major role in the recruitment of macrophages. Once endometriosis is established, the cyclic death of endometrial cells as a consequence of progesterone withdrawal leads to the release of cell debris, erythrocytes, and heme-bound iron in the peritoneal cavity. Recruited macrophages perceive ongoing cell death and tissue damage: in endometriotic patients they activate a reparative/regenerative/angiogenic program that is required for lesion maintenance, growth and spreading. In a subgroup of patients endometriosis is a preneoplastic condition. The persisting tissue healing action of macrophages that keep interfering with the physiological apoptosis while prompting proliferation of epithelial cells might set the scenario in which genetic alterations accumulate.

References

    1. Allavena P., Chieppa M., Monti P., Piemonti L. (2004). From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit. Rev. Immunol 24 179–192
    1. Arnold L., Henry A., Poron F., Baba-Amer Y., Van Rooijen N., Plonquet A., et al. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204 1057–1069
    1. Bacci M., Capobianco A., Monno A., Cottone L., Di Puppo F., Camisa B., et al. (2009). Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am. J. Pathol. 175 547–556
    1. Becker C. M., Beaudry P., Funakoshi T., Benny O., Zaslavsky A., Zurakowski D., et al. (2011). Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am. J. Pathol. 178 1782–1791
    1. Becker C. M., Rohwer N., Funakoshi T., Cramer T., Bernhardt W., Birsner A., et al. (2008). 2-methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am. J. Pathol. 172 534–544
    1. Becker C. M., Wright R. D., Satchi-Fainaro R., Funakoshi T., Folkman J., Kung A. L., et al. (2006). A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenic therapy. Am. J. Pathol. 168 2074–2084
    1. Berkley K. J., Rapkin A. J., Papka R. E. (2005). The pains of endometriosis. Science 308 1587–1589
    1. Bianchi M. E. (2007). DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81 1–5
    1. Bianchi M. E., Manfredi A. A. (2009). Immunology. Dangers in and out. Science 323 1683–1684
    1. Bokor A., Debrock S., Drijkoningen M., Goossens W., Fulop V, D’hooghe T. (2009). Quantity and quality of retrograde menstruation: a case control study. Reprod. Biol. Endocrinol. 7 123
    1. Borda J. T., Alvarez X., Mohan M., Hasegawa A., Bernardino A., Jean S., et al. (2008). CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood-brain barrier. Am. J. Pathol. 172 725–737
    1. Bosurgi L., Manfredi A. A., Rovere-Querini P. (2011). Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front. Immunol. 12:62 10.3389/fimmu.2011.00062
    1. Brancato S. K., Albina J. E. (2011). Wound macrophages as key regulators of repair: origin, phenotype, and function. Am. J. Pathol. 178 19–25
    1. Brunelli S., Rovere-Querini P. (2008). The immune system and the repair of skeletal muscle. Pharmacol. Res. 58 117–121
    1. Buhler K., Plaisance I., Dieterle T., Brink M. (2009). The human urocortin 2 gene is regulated by hypoxia: identification of a hypoxia-responsive element in the 3′-flanking region. Biochem. J. 424 119–127
    1. Bulun S. E. (2009). Endometriosis. N. Engl. J. Med. 360 268–279
    1. Cairo G., Recalcati S., Mantovani A., Locati M. (2011). Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol. 32 241–247
    1. Cakmak H., Guzeloglu-Kayisli O., Kayisli U. A., Arici A. (2009). Immune-endocrine interactions in endometriosis. Front. Biosci. (Elite Ed.) 1 429–443
    1. Campana L., Bosurgi L., Bianchi M. E., Manfredi A. A., Rovere-Querini P. (2009). Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J. Leukoc. Biol. 86 609–615
    1. Capobianco A., Cottone L., Monno A., Ferrari S., Panina-Bordignon P., Manfredi A. A., et al. (2010). Innate immune cells: gatekeepers of endometriotic lesions growth and vascularization. J. Endometr. 2 55–62
    1. Capobianco A., Monno A., Cottone L., Venneri M. A., Biziato D., Di Puppo F., et al. (2011). Proangiogenic Tie(2) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am. J. Pathol. 179 2651–2659
    1. Castiglioni A., Canti V., Rovere-Querini P., Manfredi A. A. (2011). High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res. 343 189–199
    1. Chorny A., Delgado M. (2008). Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am. J. Pathol. 172 1297–1307
    1. Chuang P. C., Lin Y. J., Wu M. H., Wing L. Y., Shoji Y., Tsai S. J. (2010). Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am. J. Pathol. 176 850–860
    1. Chuang P. C., Wu M. H., Shoji Y., Tsai S. J. (2009). Downregulation of CD36 results in reduced phagocytic ability of peritoneal macrophages of women with endometriosis. J. Pathol. 219 232–241
    1. Corna G., Campana L., Pignatti E., Castiglioni A., Tagliafico E., Bosurgi L., et al. (2010). Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95 1814–1822
    1. Cottone L., Valtorta S., Capobianco A., Belloli S., Rovere-Querini P., Fazio F., et al. (2011). Evaluation of the role of tumor-associated macrophages in an experimental model of peritoneal carcinomatosis using (18)F-FDG PET. J. Nucl. Med. 52 1770–1777
    1. Cusimano M., Biziato D., Brambilla E., Donega M., Alfaro-Cervello C., Snider S., et al. (2012). Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135 447–460
    1. Daley J. M., Brancato S. K., Thomay A. A., Reichner J. S., Albina J. E. (2010). The phenotype of murine wound macrophages. J. Leukoc. Biol. 87 59–67
    1. Darrah P. A., Patel D. T., De Luca P. M., Lindsay R. W., Davey D. F., Flynn B. J., et al. (2007). Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13 843–850
    1. David S., Kroner A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12 388–399
    1. De Palma M., Naldini L. (2009). Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim. Biophys. Acta 1796 5–10
    1. De Palma M., Naldini L. (2011). Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin. Cancer Res 17 5226–5232
    1. De Palma M., Venneri M. A., Galli R., Sergi Sergi L., Politi L. S., Sampaolesi M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8 211–226
    1. De Palma M., Venneri M. A., Roca C., Naldini L. (2003). Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9 789–795
    1. Defrere S., Gonzalez-Ramos R., Lousse J. C., Colette S., Donnez O., Donnez J., et al. (2012). Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol. Histopathol. 26 1083–1092
    1. Defrere S., Lousse J. C., Gonzalez-Ramos R., Colette S., Donnez J, Van Langendonckt A. (2008). Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Mol. Hum. Reprod. 14 377–385
    1. Defrere S., Van Langendonckt A., Vaesen S., Jouret M., Gonzalez Ramos R., Gonzalez D., et al. (2006). Iron overload enhances epithelial cell proliferation in endometriotic lesions induced in a murine model. Hum. Reprod. 21 2810–2816
    1. D’Hooghe T. M., Debrock S. (2002). Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Hum. Reprod. Update 8 84–88
    1. Di Comite G., Grazia Sabbadini M., Corti A., Rovere-Querini P., Manfredi A. A. (2007). Conversation galante: how the immune and the neuroendocrine systems talk to each other. Autoimmun. Rev. 7 23–29
    1. Di Comite G., Rossi C. M., Marinosci A., Lolmede K., Baldissera E., Aiello P., et al. (2009). Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF-alpha-elicited endothelial activation. J. Leukoc. Biol. 85 81–87
    1. Donnez J., Smoes P., Gillerot S., Casanas-Roux F., Nisolle M. (1998). Vascular endothelial growth factor (VEGF) in endometriosis. Hum. Reprod. 13 1686–1690
    1. Du R., Lu K. V., Petritsch C., Liu P., Ganss R., Passegue E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13 206–220
    1. Eggermont J., Donnez J., Casanas-Roux F., Scholtes H, Van Langendonckt A. (2005). Time course of pelvic endometriotic lesion revascularization in a nude mouse model. Fertil. Steril. 84 492–499
    1. Ehninger A., Trumpp A. (2011). The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208 421–428
    1. Elsheikh E., Sylven C., Ericzon B. G., Palmblad J., Mints M. (2011). Cyclic variability of stromal cell-derived factor-1 and endothelial progenitor cells during the menstrual cycle. Int. J. Mol. Med. 27 221–226
    1. Fainaru O., Adini A., Benny O., Adini I., Short S., Bazinet L., et al. (2008). Dendritic cells support angiogenesis and promote lesion growth in a murine model of endometriosis. FASEB J. 22 522–529
    1. Fan X., Krieg S., Kuo C. J., Wiegand S. J., Rabinovitch M., Druzin M. L., et al. (2008). VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J. 22 3571–3580
    1. Fassbender A., Overbergh L., Verdrengh E., Kyama C. M., Vodolazakaia A., Bokor A., et al. (2011). How can macroscopically normal peritoneum contribute to the pathogenesis of endometriosis? Fertil. Steril. 96 697–699
    1. Florio P., Reis F. M., Torres P. B., Calonaci F., Abrao M. S., Nascimento L. L., et al. (2009). High serum follistatin levels in women with ovarian endometriosis. Hum. Reprod. 24 2600–2606
    1. Galleri L., Luisi S., Rotondi M., Romagnani P., Cobellis L., Serio M., et al. (2008). Low serum and peritoneal fluid concentration of interferon-gamma-induced protein-10 (CXCL10) in women with endometriosis. Fertil Steril
    1. Ganz T. (2012). Macrophages and systemic iron homeostasis. J. Innate Immun. 4 446–453
    1. Girling J. E., Rogers P. A. (2009). Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signalling system. Reproduction 138 883–893
    1. Giudice L. C. (2010). Clinical practice. Endometriosis. N. Engl. J. Med. 362 2389–2398
    1. Giudice L. C., Kao L. C. (2004). Endometriosis. Lancet 364 1789–1799
    1. Gordon S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3 23–35
    1. Gordon S., Martinez F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32 593–604
    1. Gordon S., Taylor P. R. (2005). Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5 953–964
    1. Goteri G., Lucarini G., Filosa A., Pierantoni A., Montik N., Biagini G., et al. (2004). Immunohistochemical analysis of vascular endothelial growth factor cellular expression in ovarian endometriomata. Fertil. Steril. 81 1528–1533
    1. Goteri G., Lucarini G., Zizzi A., Rubini C., Di Primio R., Tranquilli A. L., et al. (2010). Proangiogenetic molecules, hypoxia-inducible factor-1alpha and nitric oxide synthase isoforms in ovarian endometriotic cysts. Virchows Arch. 456 703–710
    1. Grummer R. (2006). Animal models in endometriosis research. Hum. Reprod. Update 12 641–649
    1. Haber E., Danenberg H. D., Koroukhov N., Ron-El R., Golomb G., Schachter M. (2009). Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum. Reprod. 24 398–407
    1. Hagemann T., Lawrence T., Mcneish I., Charles K. A., Kulbe H., Thompson R. G., et al. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205 1261–1268
    1. Hara M., Yuasa S., Shimoji K., Onizuka T., Hayashiji N., Ohno Y., et al. (2011). G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J. Exp. Med. 208 715–727
    1. Harel-Adar T., Ben Mordechai T., Amsalem Y., Feinberg M. S., Leor J., Cohen S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. U.S.A. 108 1827–1832
    1. Henriet P., Gaide Chevronnay H. P., Marbaix E. (2012). The endocrine and paracrine control of menstruation. Mol. Cell. Endocrinol. 358 197–207
    1. Herrmann Lavoie C., Fraser D., Therriault M. J., Akoum A. (2007). Interleukin-1 stimulates macrophage migration inhibitory factor secretion in ectopic endometrial cells of women with endometriosis. Am. J. Reprod. Immunol. 58 505–513
    1. Hull M. L., Johan M. Z., Hodge W. L., Robertson S. A., Ingman W. V. (2012). Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am. J. Pathol. 180 880–887
    1. Huynh M. L., Fadok V. A., Henson P. M. (2002). Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest. 109 41–50
    1. Imperatore A., Rolfo A., Petraglia F., Challis J. R., Caniggia I. (2010). Hypoxia and preeclampsia: increased expression of urocortin 2 and urocortin 3. Reprod. Sci. 17 833–843
    1. Jaeschke H. (2011). Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J. Gastroenterol. Hepatol. 26(Suppl. 1) 173–179
    1. Janeway C. A., Jr. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13 11–16
    1. Kaitu’u-Lino T. J., Morison N. B., Salamonsen L. A. (2007). Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res. 328 197–206
    1. Kawai T., Akira S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34 637–650
    1. Kristiansen M., Graversen J. H., Jacobsen C., Sonne O., Hoffman H. J., Law S. K., et al. (2001). Identification of the haemoglobin scavenger receptor. Nature 409 198–201
    1. Laschke M. W., Giebels C., Menger M. D. (2011a). Vasculogenesis: a new piece of the endometriosis puzzle. Hum. Reprod. Update 17 628–636
    1. Laschke M. W., Giebels C., Nickels R. M., Scheuer C., Menger M. D. (2011b). Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. Am. J. Pathol. 178 442–450
    1. Lash G. E., Innes B. A., Drury J. A., Robson S. C., Quenby S., Bulmer J. N. (2012). Localization of angiogenic growth factors and their receptors in the human endometrium throughout the menstrual cycle and in recurrent miscarriage. Hum. Reprod. 27 183–195
    1. Lawson C., Al-Akoum M., Maheux R., Akoum A. (2007). Increased expression of interleukin-1 receptor type 1 in active endometriotic lesions. Reproduction 133 265–274
    1. Lebovic D. I., Mueller M. D., Taylor R. N. (2001). Immunobiology of endometriosis. Fertil. Steril. 75 1–10
    1. Li H., Ginzburg Y. Z. (2010). Crosstalk between Iron Metabolism and Erythropoiesis. Adv. Hematol. 2010 605435
    1. Lin S. C., Wang C. C., Wu M. H., Yang S. H., Li Y. H., Tsai S. J. (2012). Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 97 E1515–E1523
    1. Lin Y. J., Lai M. D., Lei H. Y., Wing L. Y. (2006). Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology 147 1278–1286
    1. Liu L., Yu Q., Lin J., Lai X., Cao W., Du K., et al. (2011a). Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev. 20 1961–1971
    1. Liu Y., Chen G. Y., Zheng P. (2011b). Sialoside-based pattern recognitions discriminating infections from tissue injuries. Curr. Opin. Immunol. 23 41–45
    1. Lolmede K., Campana L., Vezzoli M., Bosurgi L., Tonlorenzi R., Clementi E., et al. (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85 779–787
    1. London A., Itskovich E., Benhar I., Kalchenko V., Mack M., Jung S., et al. (2011). Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208 23–39
    1. Lotze M. T., Zeh H. J., Rubartelli A., Sparvero L. J., Amoscato A. A., Washburn N. R., et al. (2007). The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol. Rev. 220 60–81
    1. Lousse J. C., Defrere S., Van Langendonckt A., Gras J., Gonzalez-Ramos R., Colette S., et al. (2009). Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertil. Steril. 91 1668–1675
    1. Lousse J. C., Van Langendonckt A., Defrere S., Ramos R. G., Colette S., Donnez J. (2012). Peritoneal endometriosis is an inflammatory disease. Front. Biosci. (Elite Ed.) 4 23–40
    1. Lousse J. C., Van Langendonckt A., Gonzalez-Ramos R., Defrere S., Renkin E., Donnez J. (2008). Increased activation of nuclear factor-kappa B (NF-kappaB) in isolated peritoneal macrophages of patients with endometriosis. Fertil. Steril. 90 217–220
    1. Lucidi R. S., Witz C. A., Chrisco M., Binkley P. A., Shain S. A., Schenken R. S. (2005). A novel in vitro model of the early endometriotic lesion demonstrates that attachment of endometrial cells to mesothelial cells is dependent on the source of endometrial cells. Fertil. Steril. 84 16–21
    1. Luisi S., Lazzeri L., Ciani V., Petraglia F. (2009). Endometriosis in Italy: from cost estimates to new medical treatment. Gynecol. Endocrinol. 25 734–740
    1. Machado D. E., Berardo P. T., Landgraf R. G., Fernandes P. D., Palmero C., Alves L. M., et al. (2010). A selective cyclooxygenase-2 inhibitor suppresses the growth of endometriosis with an antiangiogenic effect in a rat model. Fertil. Steril. 93 2674–2679
    1. Manfredi A. A., Iannacone M., D’auria F., Rovere-Querini P. (2002). The disposal of dying cells in living tissues. Apoptosis 7 153–161
    1. Manfredi A. A., Rovere-Querini P. (2010). The mitochondrion–a Trojan horse that kicks off inflammation? N. Engl. J. Med. 362 2132–2134
    1. Manfredi A. A., Rovere-Querini P., Bottazzi B., Garlanda C., Mantovani A. (2008). Pentraxins, humoral innate immunity and tissue injury. Curr. Opin. Immunol 20 538–544
    1. Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25 677–686
    1. Markee J. E. (1978). Menstruation in intraocular endometrial transplants in the Rhesus monkey. Am. J. Obstet. Gynecol. 131 558–559
    1. Maroso M., Balosso S., Ravizza T., Liu J., Aronica E., Iyer A. M., et al. (1996). Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98 482–489
    1. Martinez F. O., Sica A., Mantovani A., Locati M. (2008). Macrophage activation and polarization. Front. Biosci. 13 453–461
    1. Martinon F., Chen X., Lee A. H., Glimcher L. H. (2010). TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11 411–418
    1. Maybin J. A., Barcroft J., Thiruchelvam U., Hirani N., Jabbour H. N., Critchley H. O. (2012). The presence and regulation of connective tissue growth factor in the human endometrium. Hum. Reprod. 27 1112–1121
    1. Maybin J. A., Critchley H. O., Jabbour H. N. (2011a). Inflammatory pathways in endometrial disorders. Mol. Cell. Endocrinol. 335 42–51
    1. Maybin J. A., Hirani N., Brown P., Jabbour H. N., Critchley H. O. (2011b). The regulation of vascular endothelial growth factor by hypoxia and prostaglandin Falpha during human endometrial repair. J. Clin. Endocrinol. Metab. 96 2475–2483
    1. Maybin J. A., Hirani N., Jabbour H. N., Critchley H. O. (2011c). Novel roles for hypoxia and prostaglandin E2 in the regulation of IL-8 during endometrial repair. Am. J. Pathol. 178 1245–1256
    1. McLaren J., Prentice A., Charnock-Jones D. S., Millican S. A., Muller K. H., Sharkey A. M., et al. (1996). Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98 482–489
    1. Meola J., Rosa E Silva J. C., Dentillo D. B., Da Silva W. A., Jr., Veiga-Castelli L. C., Bernardes L. A., et al. (2010). Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil. Steril. 93 1750–1773
    1. Minici F., Tiberi F., Tropea A., Fiorella M., Orlando M., Gangale M. F., et al. (2007). Paracrine regulation of endometriotic tissue. Gynecol. Endocrinol. 23 574–580
    1. Mints M., Blomgren B., Palmblad J. (2010). Expression of angiopoietins 1, 2 and their common receptor tie-2 in relation to the size of endothelial lining gaps and expression of VEGF and VEGF receptors in idiopathic menorrhagia. Fertil. Steril. 94 701–707
    1. Mirza R., Dipietro L. A., Koh T. J. (2009). Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175 2454–2462
    1. Molteni M., Casalgrandi M., Manfredi A. A., Bianchi M. E., Vezzani A. (2010). Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16 413–419
    1. Murray P. J., Wynn T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11 723–737
    1. Mylonas K. J., Nair M. G., Prieto-Lafuente L., Paape D., Allen J. E. (2009). Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol. 182 3084–3094
    1. Nair A. S., Nair H. B., Lucidi R. S., Kirchner A. J., Schenken R. S., Tekmal R. R., et al. (2008). Modeling the early endometriotic lesion: mesothelium-endometrial cell co-culture increases endometrial invasion and alters mesothelial and endometrial gene transcription. Fertil. Steril. 90 1487–1495
    1. Nathan C. (2002). Points of control in inflammation. Nature 420 846–852
    1. Nau G. J., Richmond J. F., Schlesinger A., Jennings E. G., Lander E. S., Young R. A. (2002). Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A. 99 1503–1508
    1. Nisolle M., Casanas-Roux F., Marbaix E., Jadoul P., Donnez J. (2000). Transplantation of cultured explants of human endometrium into nude mice. Hum. Reprod. 15 572–577
    1. Novembri R., Carrarelli P., Toti P., Rocha A. L., Borges L. E., Reis F. M., et al. (2011). Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Mol. Hum. Reprod. 17 587–593
    1. O’Brien J., Lyons T., Monks J., Lucia M. S., Wilson R. S., Hines L., et al. (2010). Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am. J. Pathol. 176 1241–1255
    1. Omwandho C. O., Konrad L., Halis G., Oehmke F., Tinneberg H. R. (2010). Role of TGF-betas in normal human endometrium and endometriosis. Hum. Reprod. 25 101–109
    1. Palm N. W., Medzhitov R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227 221–233
    1. Palumbo R., Galvez B. G., Pusterla T., De Marchis F., Cossu G., Marcu K. B., et al. (2007). Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J. Cell Biol. 179 33–40
    1. Pearce C. L., Templeman C., Rossing M. A., Lee A., Near A. M., Webb P. M., et al. (2012). Association between endometriosis and risk of histological subtypes of ovarian cancer: a pooled analysis of case-control studies. Lancet Oncol.
    1. Pellegrini C., Gori I., Achtari C., Hornung D., Chardonnens E., Wunder D., et al. (2012). The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil. Steril. 98 1200–1208
    1. Petraglia F., Musacchio C., Luisi S, De Leo V. (2008). Hormone-dependent gynaecological disorders: a pathophysiological perspective for appropriate treatment. Best Pract. Res. Clin. Obstet. Gynaecol. 22 235–249
    1. Pollard J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. J. Leukoc. Biol. 84 623–630
    1. Ponce C., Torres M., Galleguillos C., Sovino H., Boric M. A., Fuentes A., et al. (2009). Nuclear factor kappaB pathway and interleukin-6 are affected in eutopic endometrium of women with endometriosis. Reproduction 137 727–737
    1. Potente M., Gerhardt H., Carmeliet P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146 873–887
    1. Pucci F., Venneri M. A., Biziato D., Nonis A., Moi D., Sica A., et al. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114 901–914
    1. Qian B. Z., Pollard J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141 39–51
    1. Ravichandran K. S. (2011). Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35 445–455
    1. Recalcati S., Locati M., Marini A., Santambrogio P., Zaninotto F., De Pizzol M., et al. (2010). Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40 824–835
    1. Ren Q. Z., Qian Z. H., Jia S. H., Xu Z. Z. (2011). Vascular endothelial growth factor expression up-regulated by endometrial ischemia in secretory phase plays an important role in endometriosis. Fertil. Steril. 95 2687–2689
    1. Rock K. L., Lai J. J., Kono H. (2011). Innate and adaptive immune responses to cell death. Immunol. Rev. 243 191–205
    1. Rovere P., Sabbadini M. G., Fazzini F., Bondanza A., Zimmermann V. S., Rugarli C., et al. (2000). Remnants of suicidal cells fostering systemic autoaggression. Apoptosis in the origin and maintenance of autoimmunity. Arthritis Rheum. 43 1663–1672
    1. Rovere P., Vallinoto C., Bondanza A., Crosti M. C., Rescigno M., Ricciardi-Castagnoli P., et al. (1998). Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161 4467–4471
    1. Rubartelli A., Lotze M. T. (2007). Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28 429–436
    1. Saito A., Osuga Y., Yoshino O., Takamura M., Hirata T., Hirota Y., et al. (2011). TGF-beta1 induces proteinase-activated receptor 2 (PAR2) expression in endometriotic stromal cells and stimulates PAR2 activation-induced secretion of IL-6. Hum. Reprod. 26 1892–1898
    1. Sampson J. (1927). Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am. J. Obstet. Gynecol. 14 422 –469
    1. Sarkar K., Rey S., Zhang X., Sebastian R., Marti G. P., Fox-Talbot K., et al. (2012). Tie2-dependent knockout of HIF-1 impairs burn wound vascularization and homing of bone marrow-derived angiogenic cells. Cardiovasc. Res. 93 162–169
    1. Schiraldi M., Raucci A., Munoz L. M., Livoti E., Celona B., Venereau E., et al. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J. Exp. Med. 209 551–563
    1. Schwartz M. (2010). “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav. Immun. 24 1054–1057
    1. Simoens S., Dunselman G., Dirksen C., Hummelshoj L., Bokor A., Brandes I., et al. (2012). The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 27 1292–1299
    1. Sindrilaru A., Peters T., Wieschalka S., Baican C., Baican A., Peter H., et al. (2011). An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121 985–997
    1. Somigliana E., Vigano P., Filardo P., Candiani M., Vignali M., Panina-Bordignon P. (2001). Use of knockout transgenic mice in the study of endometriosis: insights from mice lacking beta(2)-microglobulin and interleukin-12p40. Fertil. Steril. 75 203–206
    1. Somigliana E., Vigano P., Rossi G., Carinelli S., Vignali M., Panina-Bordignon P. (1999). Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum. Reprod. 14 2944–2950
    1. Squadrito M. L, De Palma M. (2011). Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol. Aspects Med. 32 123–145
    1. Stappenbeck T. S., Miyoshi H. (2009). The role of stromal stem cells in tissue regeneration and wound repair. Science 324 1666–1669
    1. Stilley J. A., Birt J. A., Sharpe-Timms K. L. (2012). Cellular and molecular basis for endometriosis-associated infertility. Cell Tissue Res. 349 849-862
    1. Sun D., Martinez C. O., Ochoa O., Ruiz-Willhite L., Bonilla J. R., Centonze V. E., et al. (2009). Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J. 23 382–395
    1. Timmer A. M., Nizet V. (2008). IKKbeta/NF-kappaB and the miscreant macrophage. J. Exp. Med. 205 1255–1259
    1. Tirado-Gonzalez I., Barrientos G., Tariverdian N., Arck P. C., Garcia M. G., Klapp B. F., et al. (2010). Endometriosis research: animal models for the study of a complex disease. J. Reprod. Immunol. 86 141–147
    1. Tirado-Gonzalez I., Barrientos G., Tariverdian N., Arck P. C., Garc ia M. G., Klapp B. F., et al. (2012). Endometriosis research: animal models for the study of a complex disease. J. Reprod. Immunol. 86 141–147
    1. Urbonaviciute V., Furnrohr B. G., Meister S., Munoz L., Heyder P., De Marchis F., et al. (2008). Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205 3007–3018
    1. van Amerongen M. J., Harmsen M. C., Van Rooijen N., Petersen A. H, Van Luyn M. J. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 170 818–829
    1. van Furth R., Cohn Z. A. (1968). The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128 415–435
    1. Van Rooijen N., Sanders A. (1994). Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174 83–93
    1. Vezzoli M., Castellani P., Campana L., Corna G., Bosurgi L., Manfredi A. A., et al. (2010). Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle. Ann. N. Y. Acad. Sci. 1209 83–90
    1. Vezzoli M., Castellani P., Corna G., Castiglioni A., Bosurgi L., Monno A., et al. (2011). High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid. Redox Signal. 15 2161–2174
    1. Wang Y., Harris D. C. (2011). Macrophages in renal disease. J. Am. Soc. Nephrol. 22 21–27
    1. Wei J. J., William J., Bulun S. (2011). Endometriosis and ovarian cancer: a review of clinical, pathologic, and molecular aspects. Int. J. Gynecol. Pathol. 30 553–568
    1. Wong C. C., Gilkes D. M., Zhang H., Chen J., Wei H., Chaturvedi P., et al. (2011). Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. U.S.A. 108 16369–16374
    1. Wu M. H., Shoji Y., Wu M. C., Chuang P. C., Lin C. C., Huang M. F., et al. (2005). Suppression of matrix metalloproteinase-9 by prostaglandin E(2) in peritoneal macrophage is associated with severity of endometriosis. Am. J. Pathol. 167 1061–1069
    1. Wu M. H., Chen K. F., Lin S. C., Lgu C. W., Tsai S. J. (2007). Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am. J. Pathol. 170 590–598
    1. Wu M. H., Lin S. C., Hsiao K. Y., Tsai S. J. (2011). Hypoxia-inhibited dual-specificity phosphatase-2 expression in endometriotic cells regulates cyclooxygenase-2 expression. J. Pathol. 225 390–400
    1. Xiao Y. Q., Freire-De-Lima C. G., Schiemann W. P., Bratton D. L., Vandivier R. W., Henson P. M. (2008). Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J. Immunol. 181 3575–3585
    1. Yamaguchi K., Mandai M., Toyokuni S., Hamanishi J., Higuchi T., Takakura K., et al. (2008). Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin. Cancer Res. 14 32–40
    1. Yamaguchi K., Mandai M., Oura T., Matsumura N., Hamanishi J., Baba T., et al. (2010). Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 29 1741–1752
    1. Zhang C., Maeda N., Izumiya C., Yamamoto Y., Kusume T., Oguri H., et al. (2006). Killer immunoglobulin-like receptor and human leukocyte antigen expression as immunodiagnostic parameters for pelvic endometriosis. Am. J. Reprod. Immunol. 55 106–114
    1. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., et al. (2010a). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464 104–107
    1. Zhang Q. Z., Su W. R., Shi S. H., Wilder-Smith P., Xiang A. P., Wong A., et al. (2010b). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28 1856–1868
    1. Zhao X., Mohaupt M., Jiang J., Liu S., Li B., Qin Z. (2007). Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res. 67 4443–4450
    1. Zhou B., Rao L., Peng Y., Wang Y., Qie M., Zhang Z., et al. (2010). A functional promoter polymorphism in NFKB1 increases susceptibility to endometriosis. DNA Cell Biol. 29 235–239

Source: PubMed

3
Subscribe