Thymus dictates major histocompatibility complex (MHC) specificity and immune response gene phenotype of class II MHC-restricted T cells but not of class I MHC-restricted T cells

W M Kast, L P de Waal, C J Melief, W M Kast, L P de Waal, C J Melief

Abstract

Athymic H-2b nude mice received grafts from C57BL/6 (Sendai virus and H-Y antigen cytotoxic T lymphocyte [CTL] responder type), bm1 (H-2Kb mutant, Sendai CTL nonresponder type), or bm12 (H-21-A mutant, H-Y CTL nonresponder type) neonates. In observations of the CTL response to H-Y, both recipients and thymus donors were female. All types of thymus engraftment resulted in mature H-2b splenic T lymphocyte surface phenotype in nude hosts. T cell immunocompetence (as measured by major histocompatibility complex [MHC] CTL responses to allogeneic cells) was restored, and induced nonresponsiveness to the MHC determinants of the engrafted thymus in the nude host. The CTL reaction to Sendai virus in both responder type C57BL/6 and nonresponder type bm1 neonatal thymuses allowed maturation of Sendai-specific, H-2Kb-restricted CTL. For the CTL reaction to H-Y, only responder type C57BL/6 thymuses restored the CTL response, whereas this was not achieved with thymuses from nonresponder type bm12 neonatal females. Results of double thymus (B6 and bm12) engraftment excluded the possibility that this latter effect was caused by suppression. In addition, athymic bm1 mice were engrafted with thymuses from either B6 (Sendai CTL responder type) or syngeneic bm1 neonates (Sendai CTL nonresponder type). Again, both types of neonate thymuses restored T cell competence as measured by MHC/CTL responses to allogeneic cells. However, neither responder B6 nor nonresponder bm1 neonate thymus grafts allowed maturation of Sendai-specific CTL. In conclusion, the thymus dictates MHC specificity and immune response gene phenotype of T cells restricted to class II MHC molecules but not of T cells restricted to class I MHC molecules.

References

    1. Transplant Rev. 1976;29:89-124
    1. Transplant Rev. 1976;29:222-46
    1. J Exp Med. 1978 Mar 1;147(3):882-96
    1. J Immunol. 1978 Jun;120(6):2027-32
    1. Z Versuchstierkd. 1978;20(4):201-8
    1. J Exp Med. 1978 Sep 1;148(3):766-75
    1. Immunol Rev. 1978;42:224-70
    1. Immunol Rev. 1978;42:60-75
    1. Transplantation. 1979 May;27(5):295-7
    1. J Exp Med. 1979 Nov 1;150(5):1134-42
    1. J Exp Med. 1980 Feb 1;151(2):376-99
    1. Nature. 1980 Jan 24;283(5745):402-4
    1. Nature. 1980 Mar 20;284(5753):278-8
    1. J Immunol. 1980 Apr;124(4):1888-91
    1. J Exp Med. 1980 Jun 1;151(6):1468-76
    1. J Exp Med. 1980 Sep 1;152(3):688-702
    1. J Histochem Cytochem. 1980 Oct;28(10):1089-99
    1. J Immunol. 1981 Feb;126(2):446-51
    1. J Exp Med. 1980 Dec 1;152(6):1805-10
    1. Nature. 1981 Feb 5;289(5797):494-5
    1. Annu Rev Genet. 1980;14:241-77
    1. Cell Immunol. 1981 May 15;60(2):347-53
    1. J Immunol. 1981 Jul;127(1):244-51
    1. J Exp Med. 1981 Feb 1;153(2):464-9
    1. Immunol Rev. 1981;54:27-56
    1. J Exp Med. 1981 Aug 1;154(2):563-8
    1. J Immunol. 1981 Nov;127(5):2168-76
    1. Immunol Rev. 1981;58:157-80
    1. J Exp Med. 1982 Jan 1;155(1):339-44
    1. Immunogenetics. 1982;15(2):177-85
    1. Tissue Antigens. 1981 May;17(5):507-17
    1. J Exp Med. 1982 Jun 1;155(6):1864-9
    1. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2003-7
    1. J Exp Med. 1982 Sep 1;156(3):844-59
    1. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4737-41
    1. J Immunol. 1983 Feb;130(2):655-60
    1. J Immunol. 1983 Mar;130(3):1027-32
    1. J Immunol. 1983 Mar;130(3):1090-6
    1. Proc Natl Acad Sci U S A. 1983 Jan;80(1):242-6
    1. J Exp Med. 1983 Jun 1;157(6):1932-46
    1. J Immunol. 1983 Oct;131(4):1688-92
    1. J Exp Med. 1983 Nov 1;158(5):1537-46
    1. Eur J Immunol. 1984 Jan;14(1):14-23
    1. Nature. 1984 Apr 5-11;308(5959):551-3
    1. J Immunol. 1984 May;132(5):2185-9
    1. J Exp Med. 1976 Apr 1;143(4):999-1004
    1. J Exp Med. 1976 Oct 1;144(4):933-45

Source: PubMed

3
Subscribe