Platelet mitochondrial respiration and coenzyme Q10 could be used as new diagnostic strategy for mitochondrial dysfunction in rheumatoid diseases

Anna Gvozdjáková, Zuzana Sumbalová, Jarmila Kucharská, Monika Szamosová, Lubica Čápová, Zuzana Rausová, Oľga Vančová, Viliam Mojto, Peter Langsjoen, Patrik Palacka, Anna Gvozdjáková, Zuzana Sumbalová, Jarmila Kucharská, Monika Szamosová, Lubica Čápová, Zuzana Rausová, Oľga Vančová, Viliam Mojto, Peter Langsjoen, Patrik Palacka

Abstract

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimunne disorder affecting both small and large synovial joints, leading to their destruction. Platelet biomarkers are involved in inflammation in RA patients. Increased circulating platelet counts in RA patients may contribute to platelet hyperactivity and thrombosis. In this pilot study we evaluated platelet mitochondrial bioenergy function, CoQ10 levels and oxidative stress in RA patients.

Methods: Twenty-one RA patients and 19 healthy volunteers participated in the study. High resolution respirometry (HRR) was used for analysis of platelet mitochondrial bioenergetics. CoQ10 was determined by HPLC method; TBARS were detected spectrophotometrically.

Results: Slight dysfunction in platelet mitochondrial respiration and reduced platelet CoQ10 levels were observed in RA patients compared with normal controls.

Conclusions: The observed decrease in platelet CoQ10 levels may lead to platelet mitochondrial dysfunction in RA diseases. Determination of platelet mitochondrial function and platelet CoQ10 levels could be used as new diagnostic strategies for mitochondrial bioenergetics in rheumatoid diseases.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Respirometric analysis of mitochondrial function…
Fig 1. Respirometric analysis of mitochondrial function in human platelets.
The trace from the measurement of platelet (PLT) respiration at 37°C in a respiration medium MiR05 and 20 mM creatine. The blue line represents oxygen concentration (μM), and the red trace represents oxygen consumption as flow per cells (pmol O2·s−1·10−6 cells). The modified substrate-uncoupler-inhibitor-titration (SUIT) reference protocol 1 (RP1) [38]. includes following steps: ce1: Oxygen consumption rate of intact PLT (routine respiration); 1Dig: Respiration rate of mitochondria in PLT permeabilized with digitonin; 1PM: Complex I-linked LEAK (State 4) respiration reflects the rate of mitochondrial respiration with exogenous substrates (pyruvate and malate); 2D: Complex I-linked OXPHOS (State 3) after ADP addition reflects CI-linked ATP production; 2c: Cytochrome c addition—a test for the integrity of outer mitochondrial membrane; 3U: The rate after addition of an uncoupler CCCP represents maximal CI-linked oxidative capacity with substrates pyruvate and malate (uncoupled from OXPHOS). 4G: Noncoupled Complex I-linked oxygen consumption after the addition of substrate glutamate; 5S: Noncoupled Complex I- and Complex II-linked oxygen consumption after the addition of CII substrate succinate; 6Rot: Noncoupled Complex II-linked oxygen consumption after the addition of rotenone—an inhibitor of Complex I; 7Ama: Residual oxygen consumption (ROX) after the addition of antimycin A—an inhibitor of CIII represents respiration that is not associated with electron transfer pathways. This respiration is subtracted from all values for the determination of mitochondrial electron transfer pathways-related oxygen consumption.
Fig 2. Platelet mitochondrial function in control…
Fig 2. Platelet mitochondrial function in control subjects and groups of RA patients.
The parameters of mitochondrial respiration in human platelets expressed as oxygen (O2) flux per mitochondrial marker–the activity of citrate synthase (CS). The bars show mean±sem. The names on x-axis represent steps in the SUIT protocol RP1 (see the legend for Fig 1). Control = control subjects; RA_ALL = all patients with rheumatoid arthritis; RA_CRP = rheumatic patients with high c-reactive protein concentration; RA_CVD = rheumatic patients with cardiovascular diseases; +p<0.1.
Fig 3. Platelet count and platelets coenzyme…
Fig 3. Platelet count and platelets coenzyme Q10-TOTAL in control subjects and in groups of RA patients.
CoQ10-TOTAL (ubiquinol + ubiquinone); RA_ALL = all patients with rheumatoid arthritis; RA_CRP = rheumatic patients with high c-reactive protein concentration; RA_CVD = rheumatic patients with cardiovascular diseases; +p<0.1*p<0.05; **p<0.01, ****p<0.0001.
Fig 4
Fig 4
4A. Correlation between CoQ10-TOTAL in Platelets and Respiration of Intact Platelets in Control Subjects and RA_ALL Patients. ce1 = the rate of oxygen consumption in intact platelet; RA_ALL = all patients with RA; p = 0.069; CoQ10-TOTAL= ubiquinol + ubiquinone; PLT = platelet. 4B: Correlation between CoQ10-TOTAL in Platelets and Mitochondrial Respiration in Permeabilized Platelets in Control Subjects and RA_ALL Patients. 1PM = the rate of oxygen consumption in mitochondrial of permeabilized platelets (State 4); RA_ALL = all patients with RA; p = 0.010, p = 0.003 = statistically significant; CoQ10-TOTAL= ubiquinol + ubiquinone; PLT = platelet. 4C: Correlation between CoQ10-TOTAL in Platelets and 3U Platelets Mitochondrial Respiration in Control Subjects and RA_ALL Patients. 3U = the rate of oxygen consumption in platelet mitochondrial noncoupled respiration at CI; RA_ALL = all patients with RA; p = 0.039, in control group: p = 0.018; CoQ10-TOTAL= ubiquinol + ubiquinone; PLT = platelet. 4D: Correlation between CoQ10-TOTAL in Platelets and 4G Platelets Mitochondrial Respiration in Control Subjects and RA_ALL Patients. 4G = the rate of oxygen consumption in platelets mitochondrial noncoupled CI after addition of substrate glutamate CI; RA_ALL = all patients with rheumatoid arthritis; p = 0.060; CoQ10-TOTAL= ubiquinol + ubiquinone; PLT = platelet.
Fig 5. The OXPHOS-coupling efficiency in healthy…
Fig 5. The OXPHOS-coupling efficiency in healthy control volunteers and groups of RA patients.
RA_ALL = all patients with rheumatoic arthritis; RA_CRP = rheumatic patients with high c-reactive protein concentration; RA_CVD = rheumatic patients with cardiovascular diseases; +p<0.5; *p<0.05 statistical significance vs control group.

References

    1. Brzustewicz E, Henc I, Daca A, Szarecka M, Sochocka-Bykowska M, Witkowski J, et al.. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment. Cent Eur J Immunol 2017; 42: 259–268. doi: 10.5114/ceji.2017.70968
    1. Graf J, Scherzer R, Grunfeld C, Imboden J. Levels of C-reactive protein associated with high and very high cardiovascular risk are prevalent in patients with rheumatoid arthritis. PloS ONE, 2009; 4/7: e6242. doi: 10.1371/journal.pone.0006242
    1. Wolfe FL. Comparative usefulness of C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis. J Rheumatol 1997; 24: 1477–1485.
    1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet Lond Engl 2016; 388: 2023–2038.
    1. Littlejohn EA, Monrad S. Early diagnosis and treatment of rheumatoid arthritis. Prim Care: Clin Off Pr 2018; 45: 237–255.
    1. Aletaha D, Ramiro S. Diagnosis and Management of Rheumatoid Arthritis. JAMA 2018; 320: 1360–1372. doi: 10.1001/jama.2018.13103
    1. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pr Res Clin Rheumatol 2017; 31: 3–18. doi: 10.1016/j.berh.2017.08.003
    1. Lin YU, Anzaghe M, Schulke S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells 2020; 9:880: doi: 10.3390/cells9040880
    1. Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular anti-oxidants, and anti-oxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 2002; 21: 200–204. doi: 10.1007/s00296-001-0163-x
    1. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, et al.. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 2012; 51: 1796–1803. doi: 10.1093/rheumatology/kes193
    1. Veselinovic M, Barudzic N, Vuletic M, Zivkovic V, Tomic-Lucic A, Djuric D, et al.. Oxidative stress in rheumatoid arthritis patients: relationship to disease activity. Mol Cell Biochem 2014; 391: 225–232. doi: 10.1007/s11010-014-2006-6
    1. Garcia-González A, Gaxiola-Robles R, Zenteno-Savín T. Oxidative stress in patients with rheumatoid arthritis. Rev Invest Clin 2015; 67: 46–53.
    1. Mateen S, Moin S, Khan AG, Zafar A, Fatima N. Increased reactive oxidative species formation and oxidative stress in rheumatoid arthritis. PLoS ONE doi: 10.1371/journal.pone.0152925April4, 2016.
    1. Fearon U, Canavan M, Biniecka M, Vaele DJ. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12: 385–397. 10.1038/nrrheum.2016.69
    1. Panga V, Kallor AA, Nair A, Harshan S, Raghunathan S. Mitochondrial dysfunction in rheumatoid arthritis: A comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data. PLoS ONE; 2019; 14(11): e0224632. 10.1371/journal.pone.0224632
    1. Sá da Fonseca LJ, Nunes-Souza V, Fonseca Goulart MO, Rabelo LA. Oxidative stress in rheumatoid arthritis: What the future might hold regarding novel biomarkers and add-on therapies. Oxid Med Cell Longevity, Volume 2019, Article ID 7536805, 16 pages. 10.1155/2019/7536805
    1. Hayashi T, Tanaka S, Hori Y, Hirayama F, Sato EF, Inoue M. Role of mitochondria in the maintenance of platelet function during in vitro storage. Transf Med 2011; 21: 166–74. doi: 10.1111/j.1365-3148.2010.01065.x
    1. Wang L, Wu Q, Fan Z, Xie R, Wang Z, Lu Y. Platelet mitochondrial dysfunction and the correlation with human diseases. Biochem Soc Trans 2017; 45:1213. doi: 10.1042/BST20170291
    1. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001; 292: 504–507 doi: 10.1126/science.1058079
    1. Bauerová K, Kucharská J, Poništ S, Gvozdjáková A. Coenzyme Q10 supplementation in adjuvant arthritis (experimental model). In: Gvozdjáková A., Mitochondrial Medicine, Springer, Netherlands, 2008: 340–342.
    1. Bauerova K, Kucharska J, Ponist S, Slovak L, Svik K, Jakus V, et al.. The role of endogenous antioxidants in the treatment of experimental arthritis. Chapter. In: Antioxidants, IntechOpen, Book, 2019: 10.5772/intechopen.85568
    1. Fišar Z, Jirák R, Zvěřová M, Setnička V, Habrtová L, Hroudová J, et al.. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer´s disease. Clin Biochemistry, 10.1016/j.clinbiochem.2019.04.003
    1. Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J.: Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 2013; 13: 795–800. doi: 10.1016/j.mito.2013.05.005
    1. Sumbalová Z, Gvozdjáková A, Kucharská J, Rausová Z, Vančová O, Kuzmiaková Z, et al.. Platelet mitochondrial function, coenzyme Q10, and oxidative stress in patients with chronic kidney diseases. MiP2019/MitoEAGLE 2019: 35–36.
    1. Gvozdjáková A, Kucharská J, Sumbalová Z, Rausová Z, Chládeková A, Komlosi M, et al.. The importance of coenzyme Q10 and its ratio to cholesterol in the progress of chronic kidney diseases linked to non-communicable diseases. Bratisl Med J 2020; 121/10. 693–699. doi: 10.4149/BLL_2020_113
    1. Gvozdjáková A, Sumbalová Z, Kucharská J, Komlósi M, Rausová Z, Vančová O, et al.. Platelet mitochondrial respiration, endogenous coenzyme Q10 and oxidative stress in patients with chronic kidney disease. Diagnostics 2020; 10, 176; doi: 10.3390/diagnostics10030176
    1. Gvozdjáková A, Sumbalová Z, Kucharská J, Chládeková A, Rausová Z, Vančová O, et al.. Platelet mitochondrial bioenergetic analysis in patients with nephropathies and non-communicable diseases: a new method. Bratisl Med J 2019; 120/9: 630–635. doi: 10.4149/BLL_2019_104
    1. Gvozdjáková A, Sumbalová Z, Kucharská J, Chládeková A, Rausová Z, Vančová O, et al.. Platelets mitochondrial function depends on coenzyme Q10 concentration in human young, not in elderly subjects. J Nutritional Therapeutics 2018; 7: 67–76.
    1. Gvozdjáková A, Kucharská J, Sumbalová Z, Nemec M, Chládeková A, Vančová O, et al.. Platelet mitochondrial function depends on CoQ10 concentration in winter, not in spring season. Gen Physiol Biophys 2019; 38: 325–334. doi: 10.4149/gpb_2019012
    1. Lang J K, Gohil K, Packer L. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Analyt. Biochem 1986, 157:106–116. 10.1016/0003-2697(86)90203-4
    1. Kucharská J, Gvozdjáková A, Mizera S, Braunová Z, Schreinerová Z, Schrameková E, et al.. Participation of coenzyme Q10 in the rejection development of the transplanted heart. Physiol Res 1998; 47: 399–404.
    1. Mosca F, Fattorini D, Bompadre S, Littarru GP. Assay of coenzyme Q10 in plasma by a single dilution step. Anal. Biochem. 2002; 305: 49–54 10.1006/abio.2002.5653
    1. Niklowitz P, Menke T, Andler WM, Okun JG. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their enviroment in healthy children and after oral supplementation in adults. Clin Chim Acta 2004; 342: 219–226. doi: 10.1016/j.cccn.2003.12.020
    1. Janero DR, Bughardt B. Thiobarbituric acid-reactive malondialdehyd formation during suproxide-dependent, iron-catalyzed lipid peroxidation: influence of peroxidation conditions. Lipids 1989; 24: 125–131 10.1007/BF02535249
    1. Sumbalová Z, Droescher S, Hiller E, Chang S, Garcia L, Calabria E, et al.. O2k-Protocols: Isolation of peripheral blood mononuclear cells and platelets from human blood for HRR. Mitochondr Physiol Netw 2018; 17: 1–16.
    1. Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012; 810: 25–58. 21. doi: 10.1007/978-1-61779-382-0_3
    1. Sjövall F, Ehinger JK, Marelsson SE, Morota S, Frostner EA, Uchino H, et al.. Mitochondrial respiration in human viable platelets–methodology and influence of gender, age and storage. Mitochondrion 2013; 13: 7–14. doi: 10.1016/j.mito.2012.11.001
    1. Doerrier C, Sumbalová Z, Krumschnabel G, Hiller E, Gnaiger E. SUIT reference protocol for OXPHOS analysis by high-resolution respirometry. Mitochondr. Physiol. Netw. 2016; 21: 1–12.
    1. Ghoshal K, Bhattacharyya M: Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Scientific World Journal 2014; 2014:781857. doi: 10.1155/2014/781857
    1. Melchinger H, Jain K, Tyagi T, Hwa J. Role platelet mitochondria: Life in a nucleus-free zone. Frontiers in Cardiovascular Medicine 2019; doi: 10.3389/fcvm.2019.00153
    1. Harifi G, Sibilia J. Pathogenic role of platelets in rheumatoid arthritis and systemic autoimmune diseases: perspectives and therapeutic aspects. Saudi Med J 2016; 37(4): 354–360. doi: 10.15537/smj.2016.4.14768
    1. Roberta C, Alberto F. Mitochondriopathies and bon health. J Trends in Biomedical Research 2018; 1/1: 1–7.
    1. Gandhi SS, Muraresku S, McCormick EM, Falk MJ, McCormack SE. Risk factors for poor bone health in primary mitochondrial disease. J Inherit Metab Dis 2017; 40/5: 673–683. doi: 10.1007/s10545-017-0046-2
    1. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 2000; 348: 425–432.
    1. Dazivon-Castillo P, McMahon B, Aquilla S, Bark D, Ashworth K, et al.: TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperactivity of ageing. Blood 2019; 134/9: 727–740. doi: 10.1182/blood.2019000200
    1. Nayak MK, Dhanesha N, Doddapattar P, Rodriguez O, Sonkar VK, Dayal S, et al.. Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Adv 2018; 2/15: 2029–2038. doi: 10.1182/bloodadvances.2018022392
    1. Otera G, Miyata N, Kuge O, Mihara K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. Journal Cell Biol 2016; 212/5: 531–544. doi: 10.1083/jcb.201508099
    1. Maneiro E, Martín MA, de Andres MC, López-Armanda MJ, Fernadéz-Suerio JL, Hoyo P, et al.. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis & Rheumatism 2003; 48/3: 700–708. doi: 10.1002/art.10837
    1. Rego-Pérez I, Durán-Sotuela A, Ramos-Louro P, Blanco FJ. Mitochondrial genetics and epigenetics in osteoarthritis. Frontiers in Genetics 2020; Volume 10, Article 1336. doi: 10.3389/fgene.2019.01335
    1. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, et al.. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genom 2009; 10: 388. doi: 10.1186/1471-2164-10-388
    1. Balogh E, Veale J, McGarry T, Orr C, Szekanecz Z, Ng C, et al.. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Research & Therapy 2018; 10:95: 10.1186/s13075-018-1592-1
    1. Li J, Liu S, Cui Y. Oxidative and antioxidative stress liked biomarkers in ankylosing spondylitis: A systematic review and meta-analysis. Oxidative Med Cell Longevity, Volume 2020; Article ID 4759451, 10 pages.
    1. Slopovsky J, Kucharska J, Obertova J, Mego M, Kalavska K, Cingelova S, et al.. Plasma thiobarbituric acid reactive substances predicts survival chemotherapy naive patients with metastatic urothelial carcinoma. Translational Oncology 2021; 14: 100890; 10.1016/j.tranon.2020.100890
    1. Shiratori R, Furuichi K, Yamaguchi M, Miyazaki N, Aoki H, Chibana H, et al.. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Scientific Reports 2019; 9: 18699; 10.1038/s41598-019-55296-3
    1. Abdollahzad H, Aghdashi MA, Jafarabadi MA, Alipour B. Effect of coenzyme Q10 supplementation on inflammatory cytokines (TNF-α, IL-6) and oxidative stress in rheumatoid arthritis patients: A randomized controlled trial. Arch Med Res 2015; 46: 527–533. doi: 10.1016/j.arcmed.2015.08.006
    1. Gvozdjáková A, Kucharská J, Ostatníková D, Babinská K, Nakládal D, Crane FL. Ubiquinol improves symptoms in children with autism. Oxid Med Cell Longevity 2014; Article ID 798 957, 6 pages, 10.1155/2014/978957

Source: PubMed

3
Subscribe