The effects of different doses of exercise on pancreatic β-cell function in patients with newly diagnosed type 2 diabetes: study protocol for and rationale behind the "DOSE-EX" multi-arm parallel-group randomised clinical trial

Mark P P Lyngbaek, Grit E Legaard, Sebastian L Bennetsen, Camilla S Feineis, Villads Rasmussen, Nana Moegelberg, Cecilie F Brinkløv, Anette B Nielsen, Katja S Kofoed, Carsten A Lauridsen, Caroline Ewertsen, Henrik E Poulsen, Robin Christensen, Gerrit Van Hall, Kristian Karstoft, Thomas P J Solomon, Helga Ellingsgaard, Thomas P Almdal, Bente K Pedersen, Mathias Ried-Larsen, Mark P P Lyngbaek, Grit E Legaard, Sebastian L Bennetsen, Camilla S Feineis, Villads Rasmussen, Nana Moegelberg, Cecilie F Brinkløv, Anette B Nielsen, Katja S Kofoed, Carsten A Lauridsen, Caroline Ewertsen, Henrik E Poulsen, Robin Christensen, Gerrit Van Hall, Kristian Karstoft, Thomas P J Solomon, Helga Ellingsgaard, Thomas P Almdal, Bente K Pedersen, Mathias Ried-Larsen

Abstract

Background: Lifestyle intervention, i.e. diet and physical activity, forms the basis for care of type 2 diabetes (T2D). The current physical activity recommendation for T2D is aerobic training for 150 min/week of moderate to vigorous intensity, supplemented with resistance training 2-3 days/week, with no more than two consecutive days without physical activity. The rationale for the recommendations is based on studies showing a reduction in glycated haemoglobin (HbA1c). This reduction is supposed to be caused by increased insulin sensitivity in muscle and adipose tissue, whereas knowledge about effects on abnormalities in the liver and pancreas are scarce, with the majority of evidence stemming from in vitro and animal studies. The aim of this study is to investigate the role of the volume of exercise training as an adjunct to dietary therapy in order to improve the pancreatic β-cell function in T2D patients less than 7 years from diagnosis. The objective of this protocol for the DOSE-EX trial is to describe the scientific rationale in detail and to provide explicit information about study procedures and planned analyses.

Methods/design: In a parallel-group, 4-arm assessor-blinded randomised clinical trial, 80 patients with T2D will be randomly allocated (1:1:1:1, stratified by sex) to 16 weeks in either of the following groups: (1) no intervention (CON), (2) dietary intervention (DCON), (3) dietary intervention and supervised moderate volume exercise (MED), or (4) dietary intervention and supervised high volume exercise (HED). Enrolment was initiated December 15th, 2018, and will continue until N = 80 or December 1st, 2021. Primary outcome is pancreatic beta-cell function assessed as change in late-phase disposition index (DI) from baseline to follow-up assessed by hyperglycaemic clamp. Secondary outcomes include measures of cardiometabolic risk factors and the effect on subsequent complications related to T2D. The study was approved by The Scientific Ethical Committee at the Capital Region of Denmark (H-18038298).

Trial registration: The Effects of Different Doses of Exercise on Pancreatic β-cell Function in Patients With Newly Diagnosed Type 2 Diabetes (DOSE-EX), NCT03769883, registered 10 December 2018 https://ichgcp.net/clinical-trials-registry/NCT03769883 ). Any modification to the protocol, study design, and changes in written participant information will be approved by The Scientific Ethical Committee at the Capital Region of Denmark before effectuation.

Discussion: The data from this study will add knowledge to which volume of exercise training in combination with a dietary intervention is needed to improve β-cell function in T2D. Secondarily, our results will elucidate mechanisms of physical activity mitigating the development of micro- and macrovascular complications correlated with T2D.

Keywords: Exercise; Inflammation; Insulin resistance; Lifestyle intervention; Oxidative stress; Randomised clinical trial; Randomised controlled trial; Type 2 diabetes mellitus; β-cell function.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow of participants through the DOSE-EX study. HED, high exercise dose; MED, moderate exercise dose; DCON, dietary intervention; CON, control group. Steps 1, 2, and 3 refer to the recruitment procedure. Step 1 being the initial contact with possible participants, screening by phone and obtaining informed consent if inclusion criteria are met. In step 2, eligibility is assessed based on blood and urine samples and finally step 3 constitutes a medical examination (see text for details). If no exclusion criteria are identified the participant proceeds to baseline testing and randomisation. Participants are randomly allocated to HED, MED, DCON, or CON in a ratio of 1:1:1:1 stratified by sex
Fig. 2
Fig. 2
Overview of interventions. HED, high exercise dose; MED, moderate exercise dose; DCON, dietary intervention; CON, control group. The intervention runs over a full 16 weeks period. During the 16 weeks, adherence and individual adjustment in the different parts of the intervention (exercise, diet, and pharmacological management) will be evaluated by relevant study personnel. Dietary consulting is provided by the dietician. The coordinating exercise trainer handles consults regarding the exercise intervention and pharmacological management is provided by the study nurse in close collaboration with the blinded endocrinologist. Prior to the dietary consults, each participant will be asked to complete a 3-day dietary record to frame the conversation. Pharmacological adjustments will be based on resent results from blood samples and blood pressure measured at home
Fig. 3
Fig. 3
Overview of weekly exercise sessions. HED, high exercise dose; MED, moderate exercise dose; DCON, dietary intervention; CON, control group
Fig. 4
Fig. 4
Progression in intensity of aerobic training during the intervention. During the 16 weeks, time spend in intensity zone 80–100% of maximum heart rate (HRmax) increases gradually as time spend in intensity zone 60–79% of HRmax decreases. Total aerobic training volume for high exercise dose and moderate exercise dose are 300 and 150 min per intervention week, respectively. Volume remains unchanged throughout the intervention period
Fig. 5
Fig. 5
Resistance training periodisation. Fam, familiarisation period; RIR, repetitions in reserve. The initial 2 weeks of the intervention constitutes a familiarisation period with thorough instruction to each exercise and reduced intensity. The remaining intervention period is divided into blocks ensuring progression towards less repetitions with higher loads. The resistance training frequency for high exercise dose (HED) and moderate exercise dose (MED) are two and one time per week, respectively. RIR tests will be performed four times during the intervention to ensure that participants train with the prescribed intensity
Fig. 6
Fig. 6
Three-stage hyperglycaemic clamp. *Glucose infusion aiming at blood glucose = 5.4 mmol/l above basal. T = time. The hyperglycaemic clamp is used to evaluate beta-cell function. Participants will meet fasting in the laboratory in the morning. After placement of an antecubital venous catheter in both arms, a tracer prime dose (concentration calculated from fasting glucose and body weight) will be injected and infusion of tracers will commence at T = − 120 min. Tracer infusion will continue for 2 h to reach saturation in the circulation. During the 2-h tracer loading period, the muscle and adipose tissue biopsies will be collected. At baseline (time 0), the glucose infusion will be initiated aiming to reach blood glucose concentration at 5.4 mM above fasting. Simultaneously, the tracer infusion rate will be adjusted accordingly. Blood glucose will be measured every 5th minute throughout the remaining clamp and glucose infusion rate (GIR) will be adjusted according to the algorithm. At T = 120 min, the GLP-1 infusion is added. After another hour (T = 180), the arginine bolus is administered, and blood samples are taken continuously for 10 min before ending the clamp

References

    1. Sherwani SI, et al. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95–104. doi: 10.4137/BMI.S38440.
    1. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147–e167. doi: 10.2337/dc10-9990.
    1. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–2079. doi: 10.2337/dc16-1728.
    1. Boule NG, et al. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46(8):1071–1081. doi: 10.1007/s00125-003-1160-2.
    1. Umpierre D, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–1799. doi: 10.1001/jama.2011.576.
    1. Umpierre D, Ribeiro PAB, Schaan BD, Ribeiro JP. Volume of supervised exercise training impacts glycaemic control in patients with type 2 diabetes: a systematic review with meta-regression analysis. Diabetologia. 2013;56(2):242–251. doi: 10.1007/s00125-012-2774-z.
    1. Action to Control Cardiovascular Risk in Diabetes Study, G et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013;12(1):1–1. doi: 10.1186/1475-2840-12-1.
    1. Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complicat. 2005;19(3):178–181. doi: 10.1016/j.jdiacomp.2004.10.001.
    1. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. Jama. 2006;295(14):1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Geidl W, Schlesinger S, Mino E, Miranda L, Pfeifer K. Dose-response relationship between physical activity and mortality in adults with noncommunicable diseases: a systematic review and meta-analysis of prospective observational studies. Int J Behav Nutr Phys Act. 2020;17(1):109. doi: 10.1186/s12966-020-01007-5.
    1. Taylor R. Insulin resistance and type 2 diabetes. Diabetes. 2012;61(4):778–779. doi: 10.2337/db12-0073.
    1. Defronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795. doi: 10.2337/db09-9028.
    1. Rudenski AS, Hadden DR, Atkinson AB, Kennedy L, Matthews DR, Merrett JD, Pockaj B, Turner RC. Natural history of pancreatic islet B-cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment. Diabet Med. 1988;5(1):36–41. doi: 10.1111/j.1464-5491.1988.tb00938.x.
    1. Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–2021. doi: 10.1007/s00125-020-05245-x.
    1. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–2277. doi: 10.1016/S0140-6736(10)60408-4.
    1. Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013;36(4):1047–1055. doi: 10.2337/dc12-1805.
    1. Popa S, Mot M. Beta-Cell Function and Failure in Type 2 Diabetes. In: Masuo K, editor. Type 2 Diabetes. 2013.
    1. Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, Borén J. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia. 2006;49(4):755–765. doi: 10.1007/s00125-005-0125-z.
    1. Taylor R, al-Mrabeh A, Zhyzhneuskaya S, Peters C, Barnes AC, Aribisala BS, Hollingsworth KG, Mathers JC, Sattar N, Lean MEJ. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab. 2018;28(4):547–556. doi: 10.1016/j.cmet.2018.07.003.
    1. Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin III JR, Aguilar RB, Herman ME. A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab. 2017;28(9):645–655. doi: 10.1016/j.tem.2017.05.005.
    1. Avery L, Flynn D, van Wersch A, Sniehotta FF, Trenell MI. Changing physical activity behavior in type 2 diabetes: a systematic review and meta-analysis of behavioral interventions. Diabetes Care. 2012;35(12):2681–2689. doi: 10.2337/dc11-2452.
    1. Boule NG, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–1227. doi: 10.1001/jama.286.10.1218.
    1. Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 1995;80(5):1584–1590.
    1. Briaud I, Harmon JS, Kelpe CL, Segu VBG, Poitout V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 2001;50(2):315–321. doi: 10.2337/diabetes.50.2.315.
    1. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13(6):465–476. doi: 10.1038/nrd4275.
    1. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: 10.1038/nri2925.
    1. Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC., III A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol. 2008;295(3):C836–C843. doi: 10.1152/ajpcell.00554.2007.
    1. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32(9):1663–1668. doi: 10.2337/dc09-0533.
    1. Johansson K, Neovius M, Hemmingsson E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013;99(1):14–23. doi: 10.3945/ajcn.113.070052.
    1. Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Welsh P, Kean S, Ford I, McConnachie A, Messow CM, Sattar N, Taylor R. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344–355. doi: 10.1016/S2213-8587(19)30068-3.
    1. Karstoft K, Pedersen BK. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol. 2016;94(2):146–150. doi: 10.1038/icb.2015.101.
    1. Wedell-Neergaard AS, et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 2019;29(4):844–855.e3. doi: 10.1016/j.cmet.2018.12.007.
    1. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13(3):133–148. doi: 10.1038/nrendo.2016.162.
    1. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AMK, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17(11):1481–1489. doi: 10.1038/nm.2513.
    1. Ellingsgaard H, Seelig E, Timper K, Coslovsky M, Soederlund L, Lyngbaek MP, Wewer Albrechtsen NJ, Schmidt-Trucksäss A, Hanssen H, Frey WO, Karstoft K, Pedersen BK, Böni-Schnetzler M, Donath MY. GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia. 2020;63(2):362–373. doi: 10.1007/s00125-019-05045-y.
    1. Lang Lehrskov L, et al. Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab. 2018;27(6):1201–1211.e3. doi: 10.1016/j.cmet.2018.04.008.
    1. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337–352. doi: 10.1016/j.cmet.2018.08.014.
    1. Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018;24(1):59. doi: 10.1186/s10020-018-0060-3.
    1. Santilli F, Vazzana N, Iodice P, Lattanzio S, Liani R, Bellomo R, Lessiani G, Perego F, Saggini R, Davì G. Effects of high-amount-high-intensity exercise on in vivo platelet activation: modulation by lipid peroxidation and AGE/RAGE axis. Thromb Haemost. 2013;110(6):1232–1240. doi: 10.1160/TH13-04-0295.
    1. Dempsey PC, Blankenship JM, Larsen RN, Sacre JW, Sethi P, Straznicky NE, Cohen ND, Cerin E, Lambert GW, Owen N, Kingwell BA, Dunstan DW. Interrupting prolonged sitting in type 2 diabetes: nocturnal persistence of improved glycaemic control. Diabetologia. 2017;60(3):499–507. doi: 10.1007/s00125-016-4169-z.
    1. Karstoft K, Clark MA, Jakobsen I, Müller IA, Pedersen BK, Solomon TPJ, Ried-Larsen M. The effects of 2 weeks of interval vs continuous walking training on glycaemic control and whole-body oxidative stress in individuals with type 2 diabetes: a controlled, randomised, crossover trial. Diabetologia. 2017;60(3):508–517. doi: 10.1007/s00125-016-4170-6.
    1. Bennetsen SL, et al. The impact of physical activity on glycemic variability assessed by continuous glucose monitoring in patients with type 2 diabetes mellitus: a systematic review. Front Endocrinol (Lausanne). 2020;11:486. 10.3389/fendo.2020.00486. eCollection 2020.
    1. Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen JJ, Virtanen KA, Koivumäki M, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia. 2018;61(8):1817–1828. doi: 10.1007/s00125-018-4627-x.
    1. Curran M, Drayson MT, Andrews RC, Zoppi C, Barlow JP, Solomon TPJ, Narendran P. The benefits of physical exercise for the health of the pancreatic beta-cell: a review of the evidence. Exp Physiol. 2020;105(4):579–589. doi: 10.1113/EP088220.
    1. Dela F, et al. Physical training may enhance beta-cell function in type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287(5):E1024–E1031. doi: 10.1152/ajpendo.00056.2004.
    1. Haus JM, Solomon TPJ, Kelly KR, Fealy CE, Kullman EL, Scelsi AR, Lu L, Pagadala MR, McCullough AJ, Flask CA, Kirwan JP. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2013;98(7):E1181–E1188. doi: 10.1210/jc.2013-1229.
    1. Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705–13709. doi: 10.1073/pnas.1110105108.
    1. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57(1):157–166. doi: 10.1016/j.jhep.2012.02.023.
    1. Sondergaard E, Rahbek I, Sørensen LP, Christiansen JS, Gormsen LC, Jensen MD, Nielsen S. Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol Endocrinol Metab. 2011;300(5):E939–E944. doi: 10.1152/ajpendo.00031.2011.
    1. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The effects of physical exercise on fatty liver disease. Gene Expr. 2018;18(2):89–101. doi: 10.3727/105221617X15124844266408.
    1. Way KL, Hackett DA, Baker MK, Johnson NA. The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Metab J. 2016;40(4):253–271. doi: 10.4093/dmj.2016.40.4.253.
    1. Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in metabolic disease. Curr Opin Physiol. 2019;12:12–19. doi: 10.1016/j.cophys.2019.04.008.
    1. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. doi: 10.1136/bmjsem-2016-000143.
    1. D'Souza DM, Al-Sajee D, Hawke TJ. Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol. 2013;4:379. doi: 10.3389/fphys.2013.00379.
    1. Hernández-Ochoa EO, Vanegas C. Diabetic myopathy and mechanisms of disease. Biochem Pharmacol. 2015;4(5):e179.
    1. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care. 2012;15(1):12–22. doi: 10.1097/MCO.0b013e32834dd297.
    1. Mesinovic J, Zengin A, de Courten B, Ebeling PR, Scott D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab Syndr Obes. 2019;12:1057–1072. doi: 10.2147/DMSO.S186600.
    1. L'Honoré A, et al. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife. 2018;7:e32991. doi: 10.7554/eLife.32991.
    1. Christov C, Chrétien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–1409. doi: 10.1091/mbc.e06-08-0693.
    1. Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A, Sinagra G, Giacca M. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844–854. doi: 10.1016/j.ymthe.2004.08.007.
    1. Nederveen JP, Joanisse S, Snijders T, Thomas ACQ, Kumbhare D, Parise G. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men. J Physiol. 2018;596(6):1063–1078. doi: 10.1113/JP275155.
    1. Kargl CK, Nie Y, Evans S, Stout J, Shannahan JH, Kuang S, Gavin TP. Factors secreted from high glucose treated endothelial cells impair expansion and differentiation of human skeletal muscle satellite cells. J Physiol. 2019;597(20):5109–5124. doi: 10.1113/JP278165.
    1. Boya P, Codogno P, Rodriguez-Muela N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development.2018;145(4):dev146506. 10.1242/dev.146506.
    1. Henriksen TI, Wigge LV, Nielsen J, Pedersen BK, Sandri M, Scheele C. Dysregulated autophagy in muscle precursor cells from humans with type 2 diabetes. Sci Rep. 2019;9(1):8169. doi: 10.1038/s41598-019-44535-2.
    1. Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7):e13651. doi: 10.14814/phy2.13651.
    1. Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. doi: 10.1111/acel.12876.
    1. Dort J, et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int. 2019;2019:4761427. doi: 10.1155/2019/4761427.
    1. Fink LN, Oberbach A, Costford SR, Chan KL, Sams A, Blüher M, Klip A. Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia. 2013;56(7):1623–1628. doi: 10.1007/s00125-013-2897-x.
    1. Sluik D, Buijsse B, Muckelbauer R, Kaaks R, Teucher B, Johnsen NF, Tjønneland A, Overvad K, Østergaard JN, Amiano P, Ardanaz E, Bendinelli B, Pala V, Tumino R, Ricceri F, Mattiello A, Spijkerman AMW, Monninkhof EM, May AM, Franks PW, Nilsson PM, Wennberg P, Rolandsson O, Fagherazzi G, Boutron-Ruault MC, Clavel-Chapelon F, Castaño JMH, Gallo V, Boeing H, Nöthlings U. Physical activity and mortality in individuals with diabetes mellitus: a prospective study and meta-analysis. Arch Intern Med. 2012;172(17):1285–1295. doi: 10.1001/archinternmed.2012.3130.
    1. Karstoft K, Winding K, Knudsen SH, James NG, Scheel MM, Olesen J, Holst JJ, Pedersen BK, Solomon TPJ. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2014;57(10):2081–2093. doi: 10.1007/s00125-014-3334-5.
    1. Rogers MA, Yamamoto C, King DS, Hagberg JM, Ehsani AA, Holloszy JO. Improvement in glucose tolerance after 1 wk of exercise in patients with mild NIDDM. Diabetes Care. 1988;11(8):613–8. doi: 10.2337/diacare.11.8.613.
    1. Krotkiewski M, Lönnroth P, Mandroukas K, Wroblewski Z, Rebuffe-Scrive M, Holm G, Smith U, Björntorp P. The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1985;28(12):881–890. doi: 10.1007/BF00703130.
    1. Eriksen L, Dahl-Petersen I, Haugaard SB, dela F. Comparison of the effect of multiple short-duration with single long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus. Diabetologia. 2007;50(11):2245–2253. doi: 10.1007/s00125-007-0783-0.
    1. Hannon TS, Kahn SE, Utzschneider KM, Buchanan TA, Nadeau KJ, Zeitler PS, Ehrmann DA, Arslanian SA, Caprio S, Edelstein SL, Savage PJ, Mather KJ, for the RISE Consortium Review of methods for measuring beta-cell function: design considerations from the restoring insulin secretion (RISE) consortium. Diabetes Obes Metab. 2018;20(1):14–24. doi: 10.1111/dom.13005.
    1. Malin SK, Solomon TPJ, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic beta-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metab. 2013;305(10):E1248–E1254. doi: 10.1152/ajpendo.00260.2013.
    1. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Jaffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–369. doi: 10.7326/0003-4819-147-6-200709180-00005.
    1. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, Mikus CR, Myers V, Nauta M, Rodarte RQ, Sparks L, Thompson A, Earnest CP. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304(20):2253–2262. doi: 10.1001/jama.2010.1710.
    1. Group, A.C et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. doi: 10.1056/NEJMoa0802987.
    1. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–139. doi: 10.1056/NEJMoa0808431.
    1. Reusch JE, Manson JE. Management of Type 2 diabetes in 2017: getting to goal. JAMA. 2017;317(10):1015–1016. doi: 10.1001/jama.2017.0241.
    1. Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, Wetterslev J. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. 2011;343(nov24 1):d6898. doi: 10.1136/bmj.d6898.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.
    1. Lipska KJ, Krumholz HM. Is hemoglobin A1c the right outcome for studies of diabetes? JAMA. 2017;317(10):1017–1018. doi: 10.1001/jama.2017.0029.
    1. Solomon TP, et al. Pancreatic beta-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J Clin Endocrinol Metab. 2013;98(10):4176–4186. doi: 10.1210/jc.2013-2232.
    1. Solomon TP, et al. The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Intern Med. 2013;173(19):1834–1836. doi: 10.1001/jamainternmed.2013.7783.
    1. Leslie WS, Ford I, Sattar N, Hollingsworth KG, Adamson A, Sniehotta FF, McCombie L, Brosnahan N, Ross H, Mathers JC, Peters C, Thom G, Barnes A, Kean S, McIlvenna Y, Rodrigues A, Rehackova L, Zhyzhneuskaya S, Taylor R, Lean MEJ. The diabetes remission clinical trial (DiRECT): protocol for a cluster randomised trial. BMC Fam Pract. 2016;17(1):20. doi: 10.1186/s12875-016-0406-2.
    1. Ryan DH, et al. Look AHEAD (action for health in diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24(5):610–628. doi: 10.1016/S0197-2456(03)00064-3.
    1. Ried-Larsen M, Christensen R, Hansen KB, Johansen MY, Pedersen M, Zacho M, Hansen LS, Kofoed K, Thomsen K, Jensen MS, Nielsen RO, MacDonald C, Langberg H, Vaag AA, Pedersen BK, Karstoft K. Head-to-head comparison of intensive lifestyle intervention (U-TURN) versus conventional multifactorial care in patients with type 2 diabetes: protocol and rationale for an assessor-blinded, parallel group and randomised trial. BMJ Open. 2015;5(12):e009764. doi: 10.1136/bmjopen-2015-009764.
    1. Johansen MY, et al. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes: the U-TURN randomized clinical trial. JAMA. 2017;318(7):637–46. 10.1001/jama.2017.10169.
    1. Sievenpiper JL, Dworatzek PD. Food and dietary pattern-based recommendations: an emerging approach to clinical practice guidelines for nutrition therapy in diabetes. Can J Diabetes. 2013;37(1):51–57. doi: 10.1016/j.jcjd.2012.11.001.
    1. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009;1:CD006296.
    1. Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr. 2010;104(6):797–802. doi: 10.1017/S0007114510001534.
    1. Jenkins DJ, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–1660. doi: 10.1001/2013.jamainternmed.70.
    1. Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97(3):505–516. doi: 10.3945/ajcn.112.042457.
    1. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383(9933):1999–2007. doi: 10.1016/S0140-6736(14)60613-9.
    1. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, Neumiller JJ, Nwankwo R, Verdi CL, Urbanski P, Yancy WS. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2013;36(11):3821–3842. doi: 10.2337/dc13-2042.
    1. Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8(7A):1133–1152. doi: 10.1079/PHN2005801.
    1. De Nardi AT, et al. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Res Clin Pract. 2018;137:149–159. doi: 10.1016/j.diabres.2017.12.017.
    1. Jelleyman C, Yates T, O'Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942–961. doi: 10.1111/obr.12317.
    1. Liu Y, et al. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: a systematic review and meta-analysis. Int J Environ Res Public Health. 2019;16(1):140. 10.3390/ijerph16010140.
    1. Helms ER, Cronin J, Storey A, Zourdos MC. Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J. 2016;38(4):42–49. doi: 10.1519/SSC.0000000000000218.
    1. Zourdos MC. Novel resistance training–specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 2016;30(1):267–275. doi: 10.1519/JSC.0000000000001049.
    1. Karlsen T, Aamot IL, Haykowsky M, Rognmo Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67–77. doi: 10.1016/j.pcad.2017.03.006.
    1. Bueno AM, Pilgaard M, Hulme A, Forsberg P, Ramskov D, Damsted C, Nielsen RO. Injury prevalence across sports: a descriptive analysis on a representative sample of the Danish population. Inj Epidemiol. 2018;5(1):6. doi: 10.1186/s40621-018-0136-0.
    1. Rasmussen ST, Andersen JT, Nielsen TK, Cejvanovic V, Petersen KM, Henriksen T, Weimann A, Lykkesfeldt J, Poulsen HE. Simvastatin and oxidative stress in humans: a randomized, double-blinded, placebo-controlled clinical trial. Redox Biol. 2016;9:32–38. doi: 10.1016/j.redox.2016.05.007.
    1. Medhus AW, et al. Delay of gastric emptying by duodenal intubation: sensitive measurement of gastric emptying by the paracetamol absorption test. Aliment Pharmacol Ther. 1999;13(5):609–620. doi: 10.1046/j.1365-2036.1999.00519.x.
    1. Hannukainen JC, Borra R, Linderborg K, Kallio H, Kiss J, Lepomäki V, Kalliokoski KK, Kujala UM, Kaprio J, Heinonen OJ, Komu M, Parkkola R, Ahotupa M, Lehtimäki T, Huupponen R, Iozzo P, Nuutila P. Liver and pancreatic fat content and metabolism in healthy monozygotic twins with discordant physical activity. J Hepatol. 2011;54(3):545–552. doi: 10.1016/j.jhep.2010.07.029.
    1. American Thoracic Society; American College of Chest PhysiciansATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am J Respir Crit Care Med. 2003;167(2):211–77.
    1. Hackett DA, Johnson NA, Halaki M, Chow CM. A novel scale to assess resistance-exercise effort. J Sports Sci. 2012;30(13):1405–1413. doi: 10.1080/02640414.2012.710757.
    1. McHorney CA, Ware JE, Jr, Raczek AE. The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care. 1993;31(3):247–263. doi: 10.1097/00005650-199303000-00006.
    1. White IR, Horton NJ, Carpenter J, Pocock SJ. Strategy for intention to treat analysis in randomised trials with missing outcome data. BMJ. 2011;342(feb07 1):d40. doi: 10.1136/bmj.d40.
    1. Detry MA, Lewis RJ. The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA. 2014;312(1):85–86. doi: 10.1001/jama.2014.7523.
    1. Atlas Collaboration Reconstruction of hadronic decay products of tau leptons with the ATLAS experiment. Eur Phys J C Part Fields. 2016;76(5):295.
    1. Dmitrienko A, D'Agostino RB., Sr Multiplicity considerations in clinical trials. N Engl J Med. 2018;378(22):2115–2122. doi: 10.1056/NEJMra1709701.
    1. Clinical Safety Data Management: Definitions and Standards for Expedited Reporting. European Medicines Agency. . Date for coming into operation June 1995 . Accessed 16 Mar 2021.
    1. Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legård GE, Dorph EB, Nymand S, Ball MK, Zacho M, Christensen R, Ellingsgaard H, Rosenmeier JB, Krogh-Madsen R, Pedersen BK, Karstoft K. The role of exercise combined with tocilizumab in visceral and epicardial adipose tissue and gastric emptying rate in abdominally obese participants: protocol for a randomised controlled trial. Trials. 2018;19(1):266. doi: 10.1186/s13063-018-2637-0.
    1. Johansen MY, MacDonald CS, Hansen KB, Karstoft K, Christensen R, Pedersen M, Hansen LS, Zacho M, Wedell-Neergaard AS, Nielsen ST, Iepsen UW, Langberg H, Vaag AA, Pedersen BK, Ried-Larsen M. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA. 2017;318(7):637–646. doi: 10.1001/jama.2017.10169.
    1. Snorgaard O, et al., Farmakologisk behandling af type 2-diabetes. . Dansk Endokrinologisk Selskab og Dansk Selskab for Almen Medicin. 2014. Accessed 16 Mar 2021.
    1. Schulz KF, Altman DG, Moher D, for the CONSORT Group CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(mar23 1):c332. doi: 10.1136/bmj.c332.
    1. Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly work in Medical Journals. ICMJ. Updated 2019. Accessed 16 Mar 2021.

Source: PubMed

3
Subscribe