Electromagnetic treatment to old Alzheimer's mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit

Gary W Arendash, Takashi Mori, Maggie Dorsey, Rich Gonzalez, Naoki Tajiri, Cesar Borlongan, Gary W Arendash, Takashi Mori, Maggie Dorsey, Rich Gonzalez, Naoki Tajiri, Cesar Borlongan

Abstract

Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD.

Conflict of interest statement

Competing Interests: Co-author Dr. Cesar Borlongan is a PLoS ONE Editorial Board member. Co-author Richard Gonzalez is founder and CEO of a small electronics company, SAI of Florida, Redington Beach, Florida 33708. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

Figures

Figure 1. Cognitive performance of non-transgenic (NT)…
Figure 1. Cognitive performance of non-transgenic (NT) and APPsw transgenic (Tg) mice in the Y-maze task of spontaneous alternation (Fig. 1A) and the circular platform task of spatial/reference memory (Fig. 1B).
(Fig. 1A) Both NT and Tg mice given EMF treatment exhibited nearly significant increases in Y-maze percent alternation. For both genotypes combined, a significant increased in percent alternation was evident in EMF-treated mice. *p

Figure 2. Working memory in the radial…

Figure 2. Working memory in the radial arm water maze (RAWM) task pre-treatment, 1 month,…

Figure 2. Working memory in the radial arm water maze (RAWM) task pre-treatment, 1 month, and 1.5 months into EMF treatment for the naïve first trial (T1) and working memory trial (T5) of APPsw transgenic (Tg) and non-transgenic (NT) mice.
(Fig. 2A) Pre-treatment RAWM testing revealed Tg mice to be impaired vs. NT mice during working memory Trial 5 on the last block of testing. *p

Figure 3. Body and brain temperature measurements…

Figure 3. Body and brain temperature measurements for non-transgenic (NT) and APPsw transgenic (Tg) mice…

Figure 3. Body and brain temperature measurements for non-transgenic (NT) and APPsw transgenic (Tg) mice recorded prior to the start of EMF treatment (control), and at 1 Day, 1 week, 3 weeks, and 6 weeks into EMF treatment.
Control NT and Tg mice (no EMF exposure) maintained stable body and brain temperatures throughout the 6 week recording period. By contrast, both NT and Tg mice being treated with EMF experienced small, but significant increases in body temperature during ON periods by 1 week into treatment and time points thereafter. Although brain temperature of EMF-treated Tg mice remained stable during ON periods through the 6 week recording period, EMF-treated NT exhibited small (but significant) increases in brain temperature during ON periods at 3 and 6 weeks into EMF treatment. *p#p<0.02 vs. NT control on that day.

Figure 4. Body and brain temperature measurements…

Figure 4. Body and brain temperature measurements for APPsw+PS1 transgenic (Tg) mice recorded prior to…

Figure 4. Body and brain temperature measurements for APPsw+PS1 transgenic (Tg) mice recorded prior to the start of EMF treatment (control), as well as at 5 days and 12 days into EMF treatment.
For both control and treatment time points, there were no differences between EMF-treated and control Tg mice for either body or brain temperatures. No significant differences in OFF vs. ON temperatures (via paired t-test) were evident in EMF-treated Tg mice.

Figure 5. Regional cerebral blood flow (rCBF)…

Figure 5. Regional cerebral blood flow (rCBF) in cerebral cortex of NT and Tg mice…

Figure 5. Regional cerebral blood flow (rCBF) in cerebral cortex of NT and Tg mice in Studies I and II obtained by Laser Doppler measurements at the end of their 2 month and 12-day EMF treatment periods, respectively.
(Fig. 5A) At 2 months into EMF treatment for Study I, APPsw transgenic (Tg) mice exhibited a significant 13% decrease in rCBF during ON vs. OFF periods. During ON periods, an even greater reduction in rCBF for EMF-treated Tg mice was evident when compared to Tg controls. *p★p<0.05 vs. No EMF; ★★p<0.0001 vs. No EMF. (Fig. 5C) At 12 days into EMF treatment for Study II's APPsw+PS1 (Tg) mice, a near-significant rCBF reduction of 19% was present in EMF-treated Tg mice during ON vs. OFF periods. †p = 0.10 for ON vs. OFF (paired t-test); #p<0.05 vs. Tg control during OFF period.

Figure 6. Brain Aβ deposition in APPsw…

Figure 6. Brain Aβ deposition in APPsw transgenic (Tg) mice at 2 months after EMF…

Figure 6. Brain Aβ deposition in APPsw transgenic (Tg) mice at 2 months after EMF treatment (Study I).
(Fig. 6A) Photomicrographs showing the visually evident decrease in Aβ deposition in both hippocampus (H) and entorhinal cortex (EC) of EMF-treated mice compared to control/sham mice. Micrometer bar = 50 µm. (Fig. 6B) Quantification of percent Aβ burdens from EMF-treated and control/sham Tg mice. Highly significant reductions in Aβ deposition/aggregation were present in both hippocampus (↓30%) and entorhinal cortex (↓24%) of EMF-treated mice. *p

Figure 7. Summary diagram depicting both confirmed…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in normal mice and Alzheimer's transgenic (Tg) mice.
Long-term EMF actions that we have confirmed include prevention/reversal of brain Aβ aggregation, brain mitochondrial enhancement, and reduced cortical cerebral blood flow (CBF). These long-term EMF actions occur through slight/no increase in brain temperature and without increasing brain oxidative stress/damage.
All figures (7)
Similar articles
Cited by
References
    1. Gravitz L. A tangled web of targets. Nature. 2011;475:S9–S11. - PubMed
    1. Arns M, Luijtelaar G, Sumich A, Hamilton R, Gordon E. Electroencephalographic, personality, and executive function measures associated with frequent mobile phone use. Int J Neurosci. 2007;117:1341–1360. - PubMed
    1. Schüz J, Waldemar G, Olsen J, Johansen C. Risks for central nervous system diseases among mobile phone subscribers: a Danish retrospective cohort study. PLoS One. 2009;4:e4389. - PMC - PubMed
    1. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's mice. J Alzheimers Dis. 2010;19:191–210. - PubMed
    1. Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, et al. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience. 2011;185:135–149. - PubMed
Show all 52 references
Publication types
MeSH terms
Substances
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 2. Working memory in the radial…
Figure 2. Working memory in the radial arm water maze (RAWM) task pre-treatment, 1 month, and 1.5 months into EMF treatment for the naïve first trial (T1) and working memory trial (T5) of APPsw transgenic (Tg) and non-transgenic (NT) mice.
(Fig. 2A) Pre-treatment RAWM testing revealed Tg mice to be impaired vs. NT mice during working memory Trial 5 on the last block of testing. *p

Figure 3. Body and brain temperature measurements…

Figure 3. Body and brain temperature measurements for non-transgenic (NT) and APPsw transgenic (Tg) mice…

Figure 3. Body and brain temperature measurements for non-transgenic (NT) and APPsw transgenic (Tg) mice recorded prior to the start of EMF treatment (control), and at 1 Day, 1 week, 3 weeks, and 6 weeks into EMF treatment.
Control NT and Tg mice (no EMF exposure) maintained stable body and brain temperatures throughout the 6 week recording period. By contrast, both NT and Tg mice being treated with EMF experienced small, but significant increases in body temperature during ON periods by 1 week into treatment and time points thereafter. Although brain temperature of EMF-treated Tg mice remained stable during ON periods through the 6 week recording period, EMF-treated NT exhibited small (but significant) increases in brain temperature during ON periods at 3 and 6 weeks into EMF treatment. *p#p<0.02 vs. NT control on that day.

Figure 4. Body and brain temperature measurements…

Figure 4. Body and brain temperature measurements for APPsw+PS1 transgenic (Tg) mice recorded prior to…

Figure 4. Body and brain temperature measurements for APPsw+PS1 transgenic (Tg) mice recorded prior to the start of EMF treatment (control), as well as at 5 days and 12 days into EMF treatment.
For both control and treatment time points, there were no differences between EMF-treated and control Tg mice for either body or brain temperatures. No significant differences in OFF vs. ON temperatures (via paired t-test) were evident in EMF-treated Tg mice.

Figure 5. Regional cerebral blood flow (rCBF)…

Figure 5. Regional cerebral blood flow (rCBF) in cerebral cortex of NT and Tg mice…

Figure 5. Regional cerebral blood flow (rCBF) in cerebral cortex of NT and Tg mice in Studies I and II obtained by Laser Doppler measurements at the end of their 2 month and 12-day EMF treatment periods, respectively.
(Fig. 5A) At 2 months into EMF treatment for Study I, APPsw transgenic (Tg) mice exhibited a significant 13% decrease in rCBF during ON vs. OFF periods. During ON periods, an even greater reduction in rCBF for EMF-treated Tg mice was evident when compared to Tg controls. *p★p<0.05 vs. No EMF; ★★p<0.0001 vs. No EMF. (Fig. 5C) At 12 days into EMF treatment for Study II's APPsw+PS1 (Tg) mice, a near-significant rCBF reduction of 19% was present in EMF-treated Tg mice during ON vs. OFF periods. †p = 0.10 for ON vs. OFF (paired t-test); #p<0.05 vs. Tg control during OFF period.

Figure 6. Brain Aβ deposition in APPsw…

Figure 6. Brain Aβ deposition in APPsw transgenic (Tg) mice at 2 months after EMF…

Figure 6. Brain Aβ deposition in APPsw transgenic (Tg) mice at 2 months after EMF treatment (Study I).
(Fig. 6A) Photomicrographs showing the visually evident decrease in Aβ deposition in both hippocampus (H) and entorhinal cortex (EC) of EMF-treated mice compared to control/sham mice. Micrometer bar = 50 µm. (Fig. 6B) Quantification of percent Aβ burdens from EMF-treated and control/sham Tg mice. Highly significant reductions in Aβ deposition/aggregation were present in both hippocampus (↓30%) and entorhinal cortex (↓24%) of EMF-treated mice. *p

Figure 7. Summary diagram depicting both confirmed…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in normal mice and Alzheimer's transgenic (Tg) mice.
Long-term EMF actions that we have confirmed include prevention/reversal of brain Aβ aggregation, brain mitochondrial enhancement, and reduced cortical cerebral blood flow (CBF). These long-term EMF actions occur through slight/no increase in brain temperature and without increasing brain oxidative stress/damage.
All figures (7)
Similar articles
Cited by
References
    1. Gravitz L. A tangled web of targets. Nature. 2011;475:S9–S11. - PubMed
    1. Arns M, Luijtelaar G, Sumich A, Hamilton R, Gordon E. Electroencephalographic, personality, and executive function measures associated with frequent mobile phone use. Int J Neurosci. 2007;117:1341–1360. - PubMed
    1. Schüz J, Waldemar G, Olsen J, Johansen C. Risks for central nervous system diseases among mobile phone subscribers: a Danish retrospective cohort study. PLoS One. 2009;4:e4389. - PMC - PubMed
    1. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's mice. J Alzheimers Dis. 2010;19:191–210. - PubMed
    1. Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, et al. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience. 2011;185:135–149. - PubMed
Show all 52 references
Publication types
MeSH terms
Substances
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 3. Body and brain temperature measurements…
Figure 3. Body and brain temperature measurements for non-transgenic (NT) and APPsw transgenic (Tg) mice recorded prior to the start of EMF treatment (control), and at 1 Day, 1 week, 3 weeks, and 6 weeks into EMF treatment.
Control NT and Tg mice (no EMF exposure) maintained stable body and brain temperatures throughout the 6 week recording period. By contrast, both NT and Tg mice being treated with EMF experienced small, but significant increases in body temperature during ON periods by 1 week into treatment and time points thereafter. Although brain temperature of EMF-treated Tg mice remained stable during ON periods through the 6 week recording period, EMF-treated NT exhibited small (but significant) increases in brain temperature during ON periods at 3 and 6 weeks into EMF treatment. *p#p<0.02 vs. NT control on that day.
Figure 4. Body and brain temperature measurements…
Figure 4. Body and brain temperature measurements for APPsw+PS1 transgenic (Tg) mice recorded prior to the start of EMF treatment (control), as well as at 5 days and 12 days into EMF treatment.
For both control and treatment time points, there were no differences between EMF-treated and control Tg mice for either body or brain temperatures. No significant differences in OFF vs. ON temperatures (via paired t-test) were evident in EMF-treated Tg mice.
Figure 5. Regional cerebral blood flow (rCBF)…
Figure 5. Regional cerebral blood flow (rCBF) in cerebral cortex of NT and Tg mice in Studies I and II obtained by Laser Doppler measurements at the end of their 2 month and 12-day EMF treatment periods, respectively.
(Fig. 5A) At 2 months into EMF treatment for Study I, APPsw transgenic (Tg) mice exhibited a significant 13% decrease in rCBF during ON vs. OFF periods. During ON periods, an even greater reduction in rCBF for EMF-treated Tg mice was evident when compared to Tg controls. *p★p<0.05 vs. No EMF; ★★p<0.0001 vs. No EMF. (Fig. 5C) At 12 days into EMF treatment for Study II's APPsw+PS1 (Tg) mice, a near-significant rCBF reduction of 19% was present in EMF-treated Tg mice during ON vs. OFF periods. †p = 0.10 for ON vs. OFF (paired t-test); #p<0.05 vs. Tg control during OFF period.
Figure 6. Brain Aβ deposition in APPsw…
Figure 6. Brain Aβ deposition in APPsw transgenic (Tg) mice at 2 months after EMF treatment (Study I).
(Fig. 6A) Photomicrographs showing the visually evident decrease in Aβ deposition in both hippocampus (H) and entorhinal cortex (EC) of EMF-treated mice compared to control/sham mice. Micrometer bar = 50 µm. (Fig. 6B) Quantification of percent Aβ burdens from EMF-treated and control/sham Tg mice. Highly significant reductions in Aβ deposition/aggregation were present in both hippocampus (↓30%) and entorhinal cortex (↓24%) of EMF-treated mice. *p

Figure 7. Summary diagram depicting both confirmed…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in…

Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in normal mice and Alzheimer's transgenic (Tg) mice.
Long-term EMF actions that we have confirmed include prevention/reversal of brain Aβ aggregation, brain mitochondrial enhancement, and reduced cortical cerebral blood flow (CBF). These long-term EMF actions occur through slight/no increase in brain temperature and without increasing brain oxidative stress/damage.
All figures (7)
Figure 7. Summary diagram depicting both confirmed…
Figure 7. Summary diagram depicting both confirmed and proposed mechanisms of long-term EMF action in normal mice and Alzheimer's transgenic (Tg) mice.
Long-term EMF actions that we have confirmed include prevention/reversal of brain Aβ aggregation, brain mitochondrial enhancement, and reduced cortical cerebral blood flow (CBF). These long-term EMF actions occur through slight/no increase in brain temperature and without increasing brain oxidative stress/damage.

References

    1. Gravitz L. A tangled web of targets. Nature. 2011;475:S9–S11.
    1. Arns M, Luijtelaar G, Sumich A, Hamilton R, Gordon E. Electroencephalographic, personality, and executive function measures associated with frequent mobile phone use. Int J Neurosci. 2007;117:1341–1360.
    1. Schüz J, Waldemar G, Olsen J, Johansen C. Risks for central nervous system diseases among mobile phone subscribers: a Danish retrospective cohort study. PLoS One. 2009;4:e4389.
    1. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer's mice. J Alzheimers Dis. 2010;19:191–210.
    1. Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, et al. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience. 2011;185:135–149.
    1. Hardell L, Carlberg M, Soderqvist F, Hansson Mild K. Meta-analysis of long-term mobile phone use and the association with brain tumours. Int J Oncol. 2008;32:1097–1103.
    1. Khurana VG, Teo C, Kundi M, Hardell L, Carlberg M. Cell phones and brain tumors: a review including the long-term epidemiologic data. Surg Neurol. 2009;72:205–215.
    1. INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol. 2010;39:675–694.
    1. Swerdlow AJ, Feychting M, Green A, Kheifets L, Savitz DA. Mobile phones, brain tumours and the Interphone Study: Where are we now? 2011. National Institute of Environmental Health Sciences (NIEHS), Available: .
    1. Valberg PA, van Deventer TE, Repacholi MH. Workgroup report: base stations and wireless networks-radiofrequency (RF) exposures and health consequences. Environ Health Perspect. 2007;115:416–424.
    1. Krewski D, Glickman BW, Habash RW, Habbick B, Lotz WG, et al. Recent advances in research on radiofrequency fields and health: 2001–2003. J Toxicol Environ Health B Crit Rev. 2007;10:287–318.
    1. Aydin D, Feychting M, Schüz J, Tynes T, Andersen TV, et al. Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study. J Natl Cancer Inst. 2011;103:1264–1276.
    1. Besset A, Espa F, Dauvilliers Y, Billiard M, de Seze R. No effect on cognitive function from daily mobile phone use. Bioelectromagnetics. 2005;26:102–108.
    1. Fritzer G, Goder R, Friege L, Wachter J, Hansen V, et al. Effects of short- and long-term pulsed radiofrequency electromagnetic fields on night sleep and cognitive functions in healthy subjects. Bioelectromagnetics. 2007;28:316–325.
    1. Barth A, Ponocny I, Gnambs T, Winker R. No effects of short-term exposure to mobile phone electromagnetic fields on human cognitive performance: A meta-analysis. Bioelectromagnetics. 2011 doi: .
    1. Kwon MS, Hämäläinen H. Effects of mobile phone electromagnetic fields: critical evaluation of behavioral and neurophysiological studies. Bioelectromagnetics. 2011;32:253–272.
    1. Huber R, Treyer V, Schuderer J, Berthold T, Buck A, et al. Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur J Neurosci. 2005;21:1000–1006.
    1. Aalto S, Haarala C, Brück A, Sipilä H, Hämäläinen H, et al. Mobile phone affects cerebral blood flow in humans. J Cereb Blood Flow Metab. 2006;26:885–890.
    1. Volkow ND, Tomasi D, Wang GJ, Vaska P, Fowler JS, et al. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA. 2011;305:808–813.
    1. Mori T, Arendash GW. Long-term electromagnetic field treatment increases brain neuronal activity: linkage to cognitive benefit and therapeutic implications for Alzheimer's disease. J Alzheimer's Dis and Parkinsonism. 2011;1:2. Available: .
    1. Juutilainen J, Hoyto A, Kumlin T, Naarala J. Review of possible modulation-dependent biological effects of radiofrequency fields. Bioelectromagnetics. 2011;32:511–534.
    1. DeBow S, Colbourne F. Brain temperature measurement and regulation in awake and freely moving rodents. Methods. 2003;30:167–171.
    1. Leighty RE, Nilsson LN, Potter H, Costa DA, Low MA, et al. Use of multimetric statistical analysis to characterize and discriminate between the performance of four Alzheimer's transgenic mouse lines differing in Aβ deposition. Behav Brain Res. 2004;153:107–121.
    1. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res. 2009;47:82–96.
    1. Echeverria V, Zeitlin R, Burgess S, Patel S, Barman A, et al. Cotinine reduces amyloid-β aggregation and improves memory in Alzheimer's disease mice. J Alzheimers Dis. 2011;24:817–835.
    1. Dubreuil D, Jay T, Edeline JM. Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks? Behav Brain Res. 2002;129:203–210.
    1. Dubreuil D, Jay T, Edeline JM. Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat's memory in spatial and non-spatial tasks. Behav Brain Res. 2003;145:51–61.
    1. Ammari M, Jacquet A, Lecomte A, Sakly M, Abdelmelek H, et al. Effect of head-only sub-chronic and chronic exposure to 900-MHz GSM electromagnetic fields on spatial memory in rats. Brain Inj. 2008;22:1021–1029.
    1. Sienkiewicz ZJ, Blackwell RP, Haylock RG, Saunders RD, Cobb BL. Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice. Bioelectromagnetics. 2000;21:151–158.
    1. Kumlin T, Iivonen H, Miettinen P, Juvonen A, van Groen T, et al. Mobil phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat Res. 2007;168:471–479.
    1. Masuda H, Hirata A, Kawai H, Wake K, Watanabe S, et al. Local exposure of the rat cortex to radiofrequency electromagnetic fields increases local cerebral blood flow along with temperature. J Appl Physiol. 2011;110:142–148.
    1. Van Leeuwen GM, Lagendijk JJ, Van Leersum BJ, Zwamborn AP, Hornsleth SN, et al. Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol. 1999;44:2367–2379.
    1. Tattersall JE, Scott IR, Wood SJ, Nettell JJ, Bevir MK, et al. Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 2001;904:43–53.
    1. Cook CM, Saucier DM, Thomas AW, Prato FS. Changes in human EEG alpha activity following exposure to two different pulsed magnetic field sequences. Bioelectromagnetics. 2009;30:9–20.
    1. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, et al. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron. 2005;48:913–922.
    1. Nybo L, Møller K, Volianitis S, Nielsen B, Secher NH. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93:58–64.
    1. Nelson MD, Haykowsky MJ, Stickland MK, Altamirano-Diaz LA, Willie CK, et al. Reductions in cerebral blood flow during passive heat stress in humans: partitioning the mechanisms. J Physiol. 2011;589:4053–4064.
    1. Haarala C, Aalto S, Hautzel H, Julkunen L, Rinne JO, et al. Effects of a 902 MHz mobile phone on cerebral blood flow in humans: a PET study. Neuroreport. 2003;14:2019–2023.
    1. Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T. Cerebral clearance of human amyloid-β peptide (1–40) across the blood-brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem. 2007;103:2482–2490.
    1. Arendash GW, Su GC, Crawford FC, Bjugstad KB, Mullan M. Intravascular β-amyloid infusion increases blood pressure: implications for a vasoactive role of β-amyloid in the pathogenesis of Alzheimer's disease. Neurosci Lett. 1999;268:17–20.
    1. Paris D, Humphrey J, Quadros A, Patel N, Crescentini R, et al. Vasoactive effects of Aβ in isolated human cerebrovessels and in a transgenic mouse model of Alzheimer's disease: role of inflammation. Neurol Res. 2003;25:642–651.
    1. Kubacki R, Sobiech J, Sedek E. Model for investigation of microwave energy absorbed by young and mature living animals. 2007. 2nd International Conference on Electromagnetic Fields, Health, and Environment. Wroclaw, Poland.
    1. Nightingale NR, Goodridge VD, Sheppard RJ, Christie JL. The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys Med Biol. 1983;28:897–903.
    1. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, et al. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain Aβ production. Neuroscience. 2006;142:941–952.
    1. Arendash GW, Jensen MT, Salem N, Jr, Hussein N, Cracchiolo J, et al. A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer's transgenic mice. Neuroscience. 2007;149:286–302.
    1. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, et al. Caffeine reverses cognitive impairment and decreases brain amyloid-β levels in aged Alzheimer's disease mice. J Alzheimers Dis. 2009;17:661–680.
    1. Shimizu H, Chang LH, Litt L, Zarow G, Weinstein PR. Effect of brain, body, and magnet bore temperatures on energy metabolism during global cerebral ischemia and reperfusion monitored by magnetic resonance spectroscopy in rats. Magn Reson Med. 1997;37:833–839.
    1. Brambrink AM, Kopacz L, Astheimer A, Noga H, Heimann A, et al. Control of brain temperature during experimental global ischemia in rats. J Neurosci Methods. 1999;92:111–122.
    1. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004;1010:108–116.
    1. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, et al. Intracerebral xenografts of mouse bone marrow cells in adult rats facilitate restoration of cerebral blood flow and blood-brain barrier. Brain Res. 2004;1009:26–33.
    1. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–611.
    1. Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, et al. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem. 2012;287:6912–6927.

Source: PubMed

3
Subscribe