Treatment of Large Cartilage Defects in the Knee by Hydrogel-Based Autologous Chondrocyte Implantation: Two-Year Results of a Prospective, Multicenter, Single-Arm Phase III Trial

P Niemeyer, M Hanus, J Belickas, T László, R Gudas, M Fiodorovas, A Cebatorius, M Pastucha, P Hoza, K Magos, K Izadpanah, L Paša, G Vásárhelyi, K Sisák, M Mohyla, C Farkas, O Kessler, S Kybal, R Spiro, A Köhler, A Kirner, S Trattnig, C Gaissmaier, P Niemeyer, M Hanus, J Belickas, T László, R Gudas, M Fiodorovas, A Cebatorius, M Pastucha, P Hoza, K Magos, K Izadpanah, L Paša, G Vásárhelyi, K Sisák, M Mohyla, C Farkas, O Kessler, S Kybal, R Spiro, A Köhler, A Kirner, S Trattnig, C Gaissmaier

Abstract

Objective: To evaluate the clinical outcome of a hydrogel-based autologous chondrocyte implantation (ACI) for large articular cartilage defects in the knee joint.

Design: Prospective, multicenter, single-arm, phase III clinical trial. ACI was performed in 100 patients with focal full-thickness cartilage defects ranging from 4 to 12 cm2 in size. The primary outcome measure was the responder rate at 2 years using the Knee Injury and Osteoarthritis Outcome Score (KOOS).

Results: Two years after ACI treatment, 93% of patients were KOOS responders having improved by ≥10 points compared with their pre-operative level. The primary endpoint of the study was met and demonstrated that the KOOS response rate is markedly greater than 40% with a lower 95% CI (confidence interval) of 86.1, more than twice the pre-specified no-effect level. KOOS improvement (least squares mean) was 42.0 ± 1.8 points (95% CI between 38.4 and 45.7). Mean changes from baseline were significant in the overall KOOS and in all 5 KOOS subscores from Month 3 (first measurement) to Month 24 (inclusive) (P < 0.0001). The mean MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) score after 24 months reached 80.0 points (95% CI: 70.0-90.0 points) and 92.1 points in lesions ≤ 5 cm2.

Conclusions: Overall, hydrogel-based ACI proved to be a valuable treatment option for patients with large cartilage defects in the knee as demonstrated by early, statistically significant, and clinically meaningful improvement up to 2 years follow-up. Parallel to the clinical improvements, MRI analyses suggested increasing maturation, re-organization, and integration of the repair tissue.

Trial registration: NCT03319797; EudraCT No.: 2016-002817-22.

Keywords: autologous chondrocyte implantation; cartilage repair; hydrogel; knee; large defects.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: S.T. received payment for central MRI assessment by TETEC AG. C.G., A.Kö., and A.Ki. are employees of TETEC AG. R.S. is an employee of Aesculap Biologics LLC. All other authors received an investigator fee as outlined in the initial clinical trial authorization documents and accepted by the corresponding ethics committees.

Figures

Figure 1.
Figure 1.
KOOS responder rates over time through Month 24. Vertical error bars indicate the exact 95% confidence intervals according to Clopper and Pearson. P values are derived from the 1-sided exact binomial test of hypotheses H0: Rate ≤ 40% versus H1: Rate >40%. KOOS = Knee Injury and Osteoarthritis Outcome Score.
Figure 2.
Figure 2.
Scatter plot with linear regression model for overall KOOS change from baseline at Month 24 by prior failed cartilage repair. KOOS = Knee Injury and Osteoarthritis Outcome Score.

References

    1. Heir S, Nerhus TK, Rotterud JH, Løken S, Ekeland A, Engebretsen L, et al.. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of Knee Injury and Osteoarthritis Outcome Score in 4 patient categories scheduled for knee surgery. Am J Sports Med. 2010;38(2):231-7. doi:10.1177/0363546509352157.
    1. Sanders TL, Pareek A, Obey MR, Johnson NR, Carey JL, Stuart MJ, et al.. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med. 2017;45(8):1799-805. doi:10.1177/0363546517699846.
    1. Everhart JS, Abouljoud MM, Kirven JC, Flanigan DC. Full-thickness cartilage defects are important independent predictive factors for progression to total knee arthroplasty in older adults with minimal to moderate osteoarthritis: data from the osteoarthritis initiative. J Bone Joint Surg Am. 2019;101(1):56-63. doi:10.2106/JBJS.17.01657.
    1. Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, et al.. Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee. 2016;23(3):426-35. doi:10.1016/j.knee.2016.02.001.
    1. Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An evidence-based systematic review of human knee post-traumatic osteoarthritis (PTOA): timeline of clinical presentation and disease markers, comparison of knee joint PTOA models and early disease implications. Int J Mol Sci. 2021;22(4):1996. doi:10.3390/ijms22041996.
    1. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8(7):390-8. doi:10.1038/nrrheum.2012.80.
    1. Yue D, Du L, Zhang B, Wu H, Yang Q, Wang M, et al.. Time-dependently appeared microenvironmental changes and mechanism after cartilage or joint damage and the influences on cartilage regeneration. Organogenesis. 2021;17:85-99. doi:10.1080/15476278.2021.1991199.
    1. Riboh JC, Cvetanovich GL, Cole BJ, Yanke AB. Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3786-99. doi:10.1007/s00167-016-4300-1.
    1. Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee. 2017;24(3):508-17. doi:10.1016/j.knee.2016.12.002.
    1. Jones KJ, Kelley BV, Arshi A, McAllister DR, Fabricant PD. Comparative effectiveness of cartilage repair with respect to the minimal clinically important difference. Am J Sports Med. 2019;47(13):3284-93. doi:10.1177/0363546518824552.
    1. Zaffagnini S, Boffa A, Andriolo L, Reale D, Busacca M, Di Martino A, et al.. Mosaicplasty versus matrix-assisted autologous chondrocyte transplantation for knee cartilage defects: a long-term clinical and imaging evaluation. Appl Sci. 2020;10:4615.
    1. Zamborsky R, Danisovic L. Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy. 2020;36(3):845-58. doi:10.1016/j.arthro.2019.11.096.
    1. Biant LC, McNicholas MJ, Sprowson AP, Spalding T. The surgical management of symptomatic articular cartilage defects of the knee: consensus statements from United Kingdom knee surgeons. Knee. 2015;22(5):446-9. doi:10.1016/j.knee.2015.06.001.
    1. McCarthy HS, McCall IW, Williams JM, Mennan C, Dugard MN, Richardson JB, et al.. Magnetic resonance imaging parameters at 1 year correlate with clinical outcomes up to 17 years after autologous chondrocyte implantation. Orthop J Sports Med. 2018;6(8). doi:10.1177/2325967118788280.
    1. Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation—a systematic review. Osteoarthritis Cartilage. 2011;19(7):779-91. doi:10.1016/j.joca.2011.02.010.
    1. Bretschneider H, Trattnig S, Landgraeber S, Hartmann A, Günther K-P, Dienst M, et al.. Arthroscopic matrix-associated, injectable autologous chondrocyte transplantation of the hip: significant improvement in patient-related outcome and good transplant quality in MRI assessment. Knee Surg Sports Traumatol Arthrosc. 2020;28:1317-24. doi:10.1007/s00167-019-05466-7.
    1. Benz K, Freudigmann C, Müller J, Wurst H, Albrecht D, Badke A, et al.. A polyethylene glycol-crosslinked serum albumin/hyaluronan hydrogel for the cultivation of chondrogenic cell types. Adv Eng Mater. 2010;12(9):B535-51.
    1. Scholz B, Kinzelmann C, Benz K, Mollenhauer J, Wurst H, Schlosshauer B. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur Cell Mater. 2010;20:24-36; discussion 36-7.
    1. Ackermann J, Merkely G, Mestriner AB, Shah N, Gomoll AH. Increased chondrocytic gene expression is associated with improved repair tissue quality and graft survival in patients after autologous chondrocyte implantation. Am J Sports Med. 2019;47(12):2919-26. doi:10.1177/0363546519868213.
    1. Hirschmüller A, Baur H, Braun S, Kreuz PC, Suedkamp NP, Niemeyer P. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med. 2011;39:2686-96. doi:10.1177/0363546511404204.
    1. Mithoefer K, Saris DBF, Farr J, Kon E, Zaslav K, Cole BJ, et al.. Guidelines for the design and conduct of clinical studies in knee articular cartilage repair: international cartilage repair society recommendations based on current scientific evidence and standards of clinical care. Cartilage. 2011;2(2):100-21.
    1. Roos EM, Lohmander LS. The Knee Injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. doi:10.1186/1477-7525-1-64.
    1. de Vet HC, Ostelo RW, Terwee CB, van der Roer N, Knol DL, Beckerman H, et al.. Minimally important change determined by a visual method integrating an anchor-based and a distribution-based approach. Qual Life Res. 2007;16(1):131-42. doi:10.1007/s11136-006-9109-9.
    1. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, et al.. Development and validation of the International Knee Documentation Committee subjective knee form. Am J Sports Med. 2001;29(5):600-13. doi:10.1177/03635465010290051301.
    1. Roos EM, Engelhart L, Ranstam J, Anderson AF, Irrgang JJ, Marx RG, et al.. ICRS recommendation document: patient-reported outcome instruments for use in patients with articular cartilage defects. Cartilage. 2011;2(2):122-36. doi:10.1177/1947603510391084.
    1. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al.. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727-36. doi:10.1007/s11136-011-9903-x.
    1. Ludwig K, Graf von der Schulenburg J-M, Greiner W. German value set for the EQ-5D-5L. Pharmacoeconomics. 2018;36(6):663-74. doi:10.1007/s40273-018-0615-8.
    1. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol. 2006;57(1):16-23. doi:10.1016/j.ejrad.2005.08.007.
    1. Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol. 2007;17(1):103-18. doi:10.1007/s00330-006-0333-z.
    1. Domayer SE, Welsch GH, Dorotka R, Mamisch TC, Marlovits S, Szomolanyi P, et al.. MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol. 2008;12(4):302-17. doi:10.1055/s-0028-1100638.
    1. Domayer SE, Welsch GH, Nehrer S, Chiari C, Dorotka R, Szomolanyi P, et al.. T2-mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur J Radiol. 2010;73(3):636-42. doi:10.1016/j.ejrad.2008.12.006.
    1. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al.. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology. 2008;247(1):154-61. doi:10.1148/radiol.2471070688.
    1. Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol. 2009;19(5):1253-62. doi:10.1007/s00330-008-1249-6.
    1. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17(9):1219-27.
    1. Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol. 2009;44(9):603-12. doi:10.1097/RLI.0b013e3181b5333c.
    1. Kurkijärvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, et al.. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage. 2007;15(4):372-8. doi:10.1016/j.joca.2006.10.001.
    1. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum. 2005;52(7):2033-9. doi:10.1002/art.21148.
    1. Hafezi-Nejad N, Zikria B, Eng J, Carrino JA, Demehri S. Predictive value of semi-quantitative MRI-based scoring systems for future knee replacement: data from the osteoarthritis initiative. Skeletal Radiol. 2015;44(11):1655-62. doi:10.1007/s00256-015-2217-2.
    1. Jungmann PM, Kraus MS, Nardo L, Liebl H, Alizai H, Joseph GB, et al.. T(2) relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur: longitudinal data from the osteoarthritis initiative. J Magn Reson Imaging. 2013;38(6):1415-24. doi:10.1002/jmri.24137.
    1. Dwyer MK, Tumpowsky C, Boone A, Lee J, McCarthy JC. What is the association between articular cartilage damage and subsequent THA 20 years after hip arthroscopy for labral tears? Clin Orthop Relat Res. 2019;477(5):1211-20. doi:10.1097/CORR.0000000000000717.
    1. de Windt TS, de Vonk LA, Brittberg M, Saris DB. Treatment and prevention of (early) osteoarthritis using articular cartilage repair-fact or fiction? A systematic review. Cartilage. 2013;4(Suppl 3):5S-12S. doi:10.1177/1947603513486560.
    1. Ogura T, Ackermann J, Barbieri Mestriner A, Merkely G, Gomoll AH. Minimal clinically important differences and substantial clinical benefit in patient-reported outcome measures after autologous chondrocyte implantation. Cartilage. 2020;11:412-22. doi:10.1177/1947603518799839.
    1. Ebert JR, Smith A, Wood DJ, Ackland TR. A comparison of the responsiveness of 4 commonly used patient-reported outcome instruments at 5 years after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2013;41(12):2791-9. doi:10.1177/0363546513502314.
    1. Faber S, Seiferth N, Angele P, Spahn G, Buhs M, Zinser W, et al.. Factors correlating with patients’ satisfaction after undergoing cartilage repair surgery-data from the German Cartilage Registry (KnorpelRegister DGOU). Int Orthop. 2022;46:457-64. doi:10.1186/s13018-020-01668-9.
    1. Niemeyer P, Laute V, Zinser W, John T, Becher C, Diehl P, et al.. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1130-43. doi:10.1007/s00167-019-05786-8.
    1. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al.. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384-94. doi:10.1177/0363546514528093.
    1. Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med. 2018;6(3). doi:10.1177/2325967118761871.
    1. Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009;37(5):902-8.
    1. Schuette HB, Kraeutler MJ, Schrock JB, McCarty EC. Primary autologous chondrocyte implantation of the knee versus autologous chondrocyte implantation after failed marrow stimulation: a systematic review. Am J Sports Med. 2021;49:2536-41. doi:10.1177/0363546520968284.
    1. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325-31. doi:10.1177/0363546511425651.
    1. Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57(1):24-31.
    1. Niethammer TR, Safi E, Ficklscherer A, Horng A, Feist M, Feist-Pagenstert I, et al.. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med. 2014;42(9):2199-204. doi:10.1177/0363546514538756.
    1. Blackman AJ, Smith MV, Flanigan DC, Matava MJ, Wright RW, Brophy RH. Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis. Am J Sports Med. 2013;41(6):1426-34. doi:10.1177/0363546513485931.
    1. de Windt TS, Welsch GH, Brittberg M, Vonk LA, Marlovits S, Trattnig S, et al.. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med. 2013;41(7):1695-702. doi:10.1177/0363546512473258.
    1. Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4). doi:10.1177/2325967118765448.
    1. Henderson IJP, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br. 2003;85(7):1060-6. doi:10.1302/0301-620x.85b7.13782.
    1. Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, Fay J, et al.. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med. 2019;7(7). doi:10.1177/2325967119854442.
    1. Ebert JR, Smith A, Fallon M, Wood DJ, Ackland TR. Correlation between clinical and radiological outcomes after matrix-induced autologous chondrocyte implantation in the femoral condyles. Am J Sports Med. 2014;42(8):1857-64. doi:10.1177/0363546514534942.
    1. Kreuz PC, Müller S, von Keudell A, Tischer T, Kaps C, Niemeyer P, et al.. Influence of sex on the outcome of autologous chondrocyte implantation in chondral defects of the knee. Am J Sports Med. 2013;41(7):1541-8. doi:10.1177/0363546513489262.
    1. Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C, et al.. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med. 2011;39(8):1668-75. doi:10.1177/0363546511404675.
    1. Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy. 2007;23(4):381-7. doi:10.1016/j.arthro.2006.12.003.
    1. Shen P, Li X, Xie G, Huangfu X, Zhao J. Time-dependent effects of arthroscopic conditions on human articular cartilage: an in vivo study. Arthroscopy. 2016;32(12):2582-91. doi:10.1016/j.arthro.2016.07.021.
    1. Gowd AK, Liu JN, Bohl DD, Agarwalla A, Cabarcas BC, Manderle BJ, et al.. Operative Time as an independent and modifiable risk factor for short-term complications after knee arthroscopy. Arthroscopy. 2019;35(7):2089-98. doi:10.1016/j.arthro.2019.01.059.
    1. Schlumberger M, Schuster P, Bulow HJ, Mayer P, Eichinger M, Richter J. Arthroscopic autologous chondrocyte implantation in the knee with an in situ crosslinking matrix: minimum 4-year clinical results of 15 cases and 1 histological evaluation. Arch Orthop Trauma Surg. 2019;139(11):1607-15. doi:10.1007/s00402-019-03243-2.
    1. Migliorini F, Eschweiler J, Spiezia F, van de Wall BJM, Knobe M, Tingart M, et al.. Arthroscopy versus mini-arthrotomy approach for matrix-induced autologous chondrocyte implantation in the knee: a systematic review. J Orthop Traumatol. 2021;22(1):23. doi:10.1186/s10195-021-00588-6.
    1. Edwards PK, Ebert JR, Janes GC, Wood D, Fallon M, Ackland T. Arthroscopic versus open matrix-induced autologous chondrocyte implantation: results and implications for rehabilitation. J Sport Rehabil. 2014;23(3):203-15. doi:10.1123/jsr.2013-0042.

Source: PubMed

3
Subscribe